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ABSTRACT

Two-stage common error hierarchical normalized least-
mean-square (NLMS) algorithm is presented in the context
of network echo cancellers and sparse systems. The sug-
gested adaptive filter structure is generic, uses a common
error feedback for both stages, and is applicable with any
type of error minimization technique. The simulation results
show that the two-stage method exploits the sparseness of the
system better than the proportionate NLMS (PNLMS) while
keeping the initial convergence rate intact and improving the
steady state convergence time significantly.

1. INTRODUCTION

Sparse systems are systems in which only a small percentage
of the whole impulse response has significant components,
and the other components are close to zero [1]. Although the
two-stage adaptive structure presented in this paper can be
used in many system identification problems, we have lim-
ited our discussion to sparse adaptive systems where it is pos-
sible to observe significant benefits of the proposed method.
In addition, we have chosen network echo cancellers (NEC)
adopting NLMS type adaptive filtering as the leading appli-
cation since network echo path is sparse in nature and NLMS
based algorithms are widely used in the context of NEC.
Classic NLMS algorithms, [2] which do not take into ac-
count the sparseness of the echo path, suffer from longer con-
vergence time and higher estimation mismatch while adapt-
ing all coefficients at each iteration with uniformly dis-
tributed weight [3]. To cope with these problems, various
algorithms that harness the sparseness model of the echo path
have been developed (see [1] and the references therein). In
one approach, the PNLMS algorithm [3] sets the adaptation
step size of each filter coefficient to be proportional to the
current magnitude of the filter coefficient. In this case, adap-
tation of the more significant coefficients is emphasized sig-
nificantly, resulting in fast initial convergence. However, the
convergence rate of the PNLMS algorithm becomes slower
than the classic NLMS after this initial convergence, since
smaller coefficients receive small adaptation weight. Several
variations of the PNLMS algorithm have been proposed to
reduce these side effects by combining PNLMS with the clas-
sic NLMS algorithm [1]. Other, more advanced versions of
the PNLMS algorithms are presented in [4],[5], [6] and [7].
Although the advanced PNLMS algorithms mentioned above
produce significant improvement over the classic PNLMS al-
gorithm, they require higher computational load and there-
fore may prove less attractive for real-time NEC applications.
Another research direction suggests that the adaptive
combination of different adaptive filters improves the per-
formance of each individual filter. An extended topology
of this idea is studied in [7], [8], and [9], in the frame-
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Figure 1: Generic echo canceller.

work of multi-stage (MS) adaptive algorithms [8]. In the
first stage, independent multiple adaptive filters, using their
own error signals for adaptation, are operated to generate
separate estimated signals. In the second stage, these esti-
mated signals are further combined adaptively to generate
the final estimated signal. In [9], the hierarchical least-mean-
squares (HLMS) algorithm is presented where the full-length
adaptive filter is first partitioned into equal-length indepen-
dent adaptive filters with independent error signals. Then,
the output of each filter is combined for use in the second-
stage adaptive filter. However [10] analyzed this scheme and
showed that the individual error adaptation approach results
in biased estimation and may worsen the convergence speed
and limit of the adaptive filter when compared to the classic
NLMS algorithm.

In this work, we propose a two-stage common error
hierarchical NLMS (CEH-NLMYS) structure that better ex-
ploits the sparseness of the echo filter than the PNLMS filter
with comparable complexity to the NLMS algorithm. We
also show that the CEH-NLMS algorithm outperforms both
NLMS and PNLMS algorithms with the existence of a dis-
turbing signal such as in double-talk situation. In Section 2,
we provide some background on NLMS and PNLMS filters.
The proposed CEH-NLMS algorithm is then presented in
Section 3. Simulation results are shown in Section 4 and
conclusions are discussed in Section 5.

2. REVIEW OF NLMS AND PNLMS ALGORITHMS

The basic structure of a generic adaptive filter for echo can-
celler can be found in Fig. 1 where x(k) is the reference signal
that excites the echo path (k will be used as time index in the
sequel). The signal s(k) is the superposition of d(k) which is
the echo of x(k), the near-end signal w(k) (also called double-
talk signal) and any additional noise n(k). At each adaptation
iteration k, the echo canceller estimates N coefficients of the
adaptive filter &, where h(k,n) refers to tap number n of the
filter at time index k and n = 0,...,(N — 1). The filter coef-
ficients of & are then used together with the reference signal
x(k) to generate the estimated echo signal y(k), which is sub-
tracted from the input signal s(k) to obtain the residual output
signal of the filter e(k). The error signal is finally fed back to
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the adaptive filter to calculate the filter coefficients at the next
iteration. The main equations that characterize the PNLMS
algorithm are defined originally in [3] as:

N—1
e(k) = s(k) — Z’Oh(k,n)x(kfn) 1)
020 = LY k- @
N n=0

g(k,n) pce(k)x(k —n)
g(k)  Nol+p

h(k+1,n) = h(k,n) + 3

where g(k,n) ~ |h(k,n)| and g(k) is the average of all N
weighting coefficients. If the term g(k,n)/g(k) was elimi-
nated from (3), or equivalently equal weights were used for
all filter taps, the PNLMS update equation would be identi-
cal to NLMS update. Eq. (3) suggests that when the current
estimate of h(k,n) is significantly high, it receives a large
adaptation weight in the next iteration step. Although this
behavior is desired at the beginning of the process in order
to achieve a high convergence rate, at a later stage it results
in a slower convergence rate for the smaller taps, as stated in
Section 1.

3. THE PROPOSED METHOD: CEH-NLMS

The common error hierarchical adaptive structure proposed
in this paper is depicted in Fig. 2. In the first stage, the
reference signal delay line with elements x(k — n) and fil-
ter coefficients h(k,n) are divided into M blocks with length
L, where N =ML and n = 0,...,N — 1. Using this partition
approach, M segments generate M distinct partial estimated
echo signals u(k,m) for m = 0,....M — 1. In the standard
NLMS scheme, the direct addition of the signals u(k,m) with
unit gain results in the generation of the regular overall esti-
mated signal y(k). In our CEH-NLMS scheme, we introduce
a second-stage filter which combines the partial estimated
signals u(k,m) with weights a(k,m) in order to generate a
final estimated echo signal y(k). Finally y(k) is subtracted
from the input signal s(k) in order to calculate the common
error e(k). In the CEH-NLMS algorithm, both first-stage fil-
ter coefficients and second-stage adaptation weights are de-
rived adaptively by using distinct NLMS tap update equa-
tions. For the first stage, filter coefficient (k,n) adaptation is
done in the same way described in (3) where all N filter coef-
ficients are calculated using x(k) as the regression signal and
the common error signal e(k) is used as the error signal. In
the second stage, the same NLMS adaptation equation (3) is
duplicated to update all M adaptation weights, where u(k,m)
is used as the regression signal and the common residual sig-
nal e(k) is used as the error signal.

The equations of the proposed CEH-NLMS algorithm
can be summarized as follows:

L-1

u(k,m) =Y h(k,mL+1)x(k—(mL+1))  (4)
l=0 M—1
e@%z%@fzidhmwwmﬂ )
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Figure 2: CEH-NLMS algorithm structure
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where 1, are adaptation step sizes and f,,B, are the
regularization parameters for the two stages. In addition,
the weight coefficients a(k,m) are bounded such that & <
a(k,m) < 1/€ where 0 < & < 1 in order to prevent the
weights from being too high or too low. It is possible to
conclude that the computational complexity load of this ap-
proach is comparable to the original NLMS method, since
the weights adaptation filter length M is relatively small
when compared to the first-stage filter length N.

Considering the second-stage adaptive filter, the common
error signal (5) can be written as:

e(k) = s(k) —a" (k) - u(k) (10)
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where a(k) = [a(k,0),...,a(k,M — 1)]T and u(k) =
[u(k,0),...,u(k,M —1)]T and ()7 denotes transpose oper-
ation. In the minimum mean square error (MMSE) sense, it
is known that the solution to (10) is given by [2]:

a(k)=R,'p (11)

Uus

where R, is the autocorrelation matrix of u(k) and p
the cross-correlation vector of u(k) and s(k) defined as:

R = E{u(k) - u” (k)} (12)
p,, = E{u(k)-s(k)} (13)
E{e} denotes statistical expectation operator. Turning now

to the the first-stage adaptive filter output u(k,m) (4), form =
0,...,M—1, we have:

u(k,m) = h* (k,m) - x(k,m) (14)
(k, = [h(k,mL),...,h(k, (m+1)L—1)]" (15)
x(k,m) = [x(k—mL),...,x(k— (m+1)L—1)]"  (16)

Using (12), (14)-(16) it can be shown that the elements of
second-stage autocorrelation matrix ry,(i, j) can be repre-
sented as:
rua(iy J) = h" (k,i) - R - h(k, ) a7
where R/ is the sub-autocorrelation matrix of the input sig-
nal defined as:
Ry = E{x(k,i)-x" (k. j)} (18)
Observing (17), it can be concluded that each element of

the second-stage autocorrelation matrix R, is a weighted
average of the corresponding first-stage autocorrelation sub-

matrix R}y, with weights equal to the matching vector h(k, 7).
This attribute derives some important benefits to the over-
all convergence characteristics of the CEH-NLMS algorithm.
Consider the case of a white first-stage autocorrelation matrix
R, which is not full rank, i.e., there are some zero elements
on the matrix diagonal. In this case the averaging process
of the R,,, matrix may remove some of the zero elements
thereby transforming R, into a fuller rank autocorrelation
matrix. Consider also the case of a correlated x(k) signal,
i.e., R, consists of some non-zero elements off the matrix
diagonal. In this case, the averaging process may reduce the
correlation impact in R,,. Furthermore, since both stages
converge using the same error signal, they are expected to
resemble one another when no correlated interference exists
in s(k), i.e., low weight values for inactive filter sections and
high weights values for active filter sections. Resulting from
this, the correlated parts of R, corresponding to non-active

sections may be eliminated by the weighted average.
A similar analysis can be performed while evaluating p

to get:

Pus(i) =h" (k,m) - p_(i) (19)
where ps(i) is the i’ element of p,, and p_(i) is the sub-

cross-correlation vector of the input 51gnal deﬁned as:

p (i) = E{x(k,i)-s(k)} (20)
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Figure 3: (a) First echo path from [11]. (b) Second echo path
from [11].

Similar conclusions can be reached as well while analyz-
ing p - expression given by (19). To conclude, it can be
stated that the second-stage adaptive filter convergence char-
acteristics are enhanced due to the weighted average process
applied to Ry, and pm(i), making the filter react better to
correlated reference and interference signals. This results in
better overall filter performance since both stage filters share
the same error signal.

The two-stage approach of CEH-NLMS shares similar
ideas to MS [8] and HLMS [9] adaptive filtering discussed
in Section 1. The distinct sub-blocks of the CEH-NLMS
algorithm in the first stage can be seen as distinct adaptive
algorithms in the first-stage HLMS approach. In addition,
the adaptive weighting approach of CEH-NLMS in the sec-
ond stage is similar to the adaptive mixture algorithm of the
HLMS. On the other hand, CEH-NLMS differs from HLMS
in two ways. First, adaptation of the filter coefficients of the
first stage is done together in CEH-NLMS via (8) which can
be seen as collaboration between distinct blocks. Second,
collaboration exists between the first-stage and second-stage
adaptation via (8) and (9) where the same common error sig-
nal e(k) is used for the adaptation of both / and a coefficients.
The common error use in both stages adaptation schemes
effectively removes the undesired convergence behavior de-
scribed at [10].

4. SIMULATION RESULTS

In the simulation, we use two different sparse impulse re-
sponses given by [11] (Fig. 3). In the first impulse response
(Fig. 3a), the pure delay is set to 100 [samples] and the echo
return loss (ERL) to 10 [dB]. In the second (Fig. 3b), the pure
delay is equal to 200 [samples] and the ERL to 8 [dB]. The
filter length of the echo canceller N is set to 1024 thereby
extending both impulse responses to 1024 taps.

We choose to compare the proposed algorithm with the
classic NLMS and PNLMS algorithms, both of which are
widely used in NEC and possess different convergence at-
tributes. Although there exists many extensions of PNLMS
algorithms known in the literature that improve its perfor-
mance significantly (e.g.[1],[4]), we decided to use PNLMS
method for our simulations due to higher computational com-
plexity burden for most of these improvements. The step size
for all algorithms is set to g, = 0.1. For CEH-NLMS algo-
rithm, the sub-block length L is set to 64, the step size of
the second stage is chosen as u, = ,/(2L), the weighting
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Figure 4: Misadjustment of the NLMS, PNLMS and CEH-
NLMS algorithms. (a) Reference signal is a white Gaussian
noise. Echo path change at iteration 2-10°. (b) Reference
signal is speech.

coefficients limit factor £ is 0.01 and the values for the a
weight vector is initially set to 1. Performance measure for
our simulations is the normalized misadjustment defined as:

201og,,(||h — h[k]||2/|/h|2), where h is the desired impulse

response, h[k] is the estimated impulse response at iteration
k and || e |2 denotes the I, norm.

First we evaluate the convergence performance and track-
ing abilities of the algorithms. The reference signal in this
simulation is a white Gaussian noise. An independent white
Gaussian interference is added to the input signal to achieve
a SNR of 35 [dB]. At the beginning of the simulation the
input signal is generated by convolving the reference signal
with the first echo path displayed in Fig. 3a. At iteration
2 x 10° the echo path is instantaneously changed to the sec-
ond echo path displayed in Fig. 3b. The results are presented
in Fig. 4a. It can be noted that the proposed algorithm initial
convergence rate is comparable to the convergence rate of the
PNLMS algorithm and outperforms the initial convergence
rate of the NLMS algorithm. Unlike the PNLMS algorithm,
the proposed algorithm initial convergence is maintained un-
til the steady state convergence limit is reached, thus enabling
the CEH-NLMS to reach the steady state convergence limit
faster than the PNLMS and NLMS algorithms. Observing
the algorithms misadjustment after the echo path change at
iteration 2 x 10°, it can be concluded that the convergence
rate behavior of the algorithm is maintained thus exhibiting
good tracking ability.

Fig. 4b compares the convergence performance of the al-
gorithms for a speech reference signal. The average mis-
adjustment generated by seven different speech sequences
of different languages from both male and female speakers
sampled at 16[KHz] is displayed. The echo path of Fig. 3a
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Figure 5: (a) Misadjustment of the NLMS, PNLMS and
CEH-NLMS algorithms. Reference signal is a white Gaus-
sian noise. Speech interference at iteration 0.75 x 10°. (b)
Behavior of adaptation weights a for a converged state. (c)
Behavior of adaptation weights a for a double-talk state.

is used to generate the input signal. It is possible to note that
the proposed algorithm outperforms the other algorithms.

Finally the algorithm performance under double-talk in-
terference (Fig. 5a) is compared. The reference signal used
in this simulation is a white Gaussian noise convolved with
the echo path of Fig. 3a. An independent white Gaussian in-
terference is added to the input signal to achieve a SNR of
30 [dB]. An interference speech signal is added to the input
signal at iteration 0.75 x 10° to generate double-talk situa-
tion, where the speech signal RMS power is —24 [dB]. It
can be noticed that the proposed algorithm outperforms the
NLMS and PNLMS algorithm during the double-talk inter-
val. The performance of the CEH-NLMS algorithms during
double-talk situation becomes even more perceptible during
listening tests.

An explanation for the better performance of CEH-
NLMS in a double-talk situation can be related to the second-
stage adaptation weight values. Fig. 5b and Fig. 5c dis-
play typical second-stage adaptation weight for full conver-
gence and double-talk situations respectively. When we com-
pare the converged values of the second-stage filter (Fig. 5b)
with the echo path response used to generate the input signal
(Fig. 3a), it is clear that adaptation weight values at the active
parts of the echo path get high values, emphasizing the asso-
ciated first-stage filter taps values in the active region. It can
also be noted that the the non-active parts of the echo path
have corresponding second-stage adaptation weights whose
values are lower than 1, hence the associated first-stage fil-
ter taps values in the non-active regions are attenuated. This
behavior reduces the tap mismatch noise of the overall adap-
tive filter. When we refer to the second-stage weight val-
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ues during double-talk (Fig. 5c), it can be seen that while
the second-stage weights associated with the active parts of
the echo path still maintain high values, the weights related
to the non-active parts have close to zero magnitude. The
low magnitude of these weights of the non-active part pre-
vents the first-stage filter taps associated with the non-active
parts from diverging, thus enhancing the proposed algorithm
performance in double-talk situations without the use of any
external double-talk detection.

5. CONCLUSIONS AND DISCUSSION

In this paper, the performance of the two-stage CEH-NLMS
algorithm is introduced and compared with NLMS and
PNLMS algorithms in the context of NEC employing NLMS
based algorithm. It is important to note that the same two-
stage structure of Fig. 2 can be used with any type of adaptive
algorithms, e.g. recursive least-square (RLS) or affine pro-
jections (AP) algorithms. Simulation results state that CEH-
NLMS overall convergence rate outperforms both NLMS
and PNLMS with comparable complexity to the original
NLMS algorithm. Our future research directions include:
the extensions applying other error minimization functions,
optimal sub-block partition strategies and the impact of ad-
ditional hierarchical layers.
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