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ABSTRACT 
In this paper, a new structure is introduced for the design of 
variable fractional-delay (VFD) FIR filters. Based on Taylor 
series expansion of the desired frequency response, an effec-
tive structure can be derived. Design example shows that the 
performance of the proposed system is better or the required 
number of independent coefficients is less than the existing 
structures. 

1. INTRODUCTION 

Variable fractional-delay (VFD) filters belong to a branch of 
variable digital filters which are applied in applications in 
which the frequency characteristics need to be adjustable 
online without redesigning a new filter. Due to their wide 
applications in signal processing and communication systems, 
the design of VFD filters has received considerable attention 
in the past decade. Since the Farrow structure is proposed in 
1988 [1], several works have been announced [2-14], espe-
cially, basing on FIR-based structure [3-5] [7] [9] [13-14]. 
Conventionally, the transfer function for designing a VFD 
FIR filter is represented by 
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where p  is the adjustable parameter,  N  is set to be even in 
the paper and the subfilters 
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The whole system in (1) can be implemented by the structure 
shown in Fig. 1(a) [1]. In this paper,  the integer M  is as-
sumed to be odd for simplicity. For improving the complexity, 
Deng has recently proposed a hybrid structure [14] and the 
transfer function of low-complexity system can be repre-
sented by  
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Figure 1 – The structures for VFD FIR filters. (M=7) (a) Conven-

tional method. [1] (b) Deng’s method. [14] (c) Proposed method. 
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The corresponding structure of (3) is shown in Fig. 1(b). 
In this paper, a new structure will be proposed for the design 
of VFD FIR filters. The structure is derived based on Taylor 
series expansion of j pe ω− , and the system design will be de-
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veloped in Section 2. By the given example, it can be shown 
that the accuracy of the proposed method is much better than 
the conventional method under the cost of larger delay. 
Comparing the proposed method with Deng’s method [14], 
the demonstration also shows that the required number of 
independent coefficients for the proposed structure is less 
than that in the Deng’s structure when the accuracy of the 
proposed method is comparable with Deng’s method. 

2. PROBLEM FORMULATION AND DESIGN 
EXAMPLE 

For designing a VFD digital filter, the desired frequency re-
sponse is given by 

 ( ) ( ), ,   ,   -0.5 0.5j I p
d pH p e pωω ω ω− += ≤ ≤ ≤  (6) 

where I  is a prescribed integer. Applying Taylor series ex-
pansion, 
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 (7) 
Hence, the proposed transfer function in this paper is repre-
sented by 
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and the system structure is shown in Fig. 1(c). In (8), the 
transfer functions of ( )D z  and ( )2mG z  are given as below: 
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It can be observed that ( )D z  is designed as a differentiator 
with magnitude ω− . 
The frequency response of (8) can be represented by 
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where 
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and 
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By (6) and (10), the integer delay I  in (6) can be set as 

2 2
gd NNI = + . 

 
2.1 Design of the prefilter  
By defining 

 ( ) ( )ˆ ˆ ˆ1 ,   2 , ,
2

d
T

dN
d d d
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
L  (12a) 

 ( ) ( ) ( )sin ,   sin 2 , ,sin
2

s
T

dN
ω ω ω ω

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

L  (12b) 

where T denotes a transpose operator, (11a) can be repre-
sented in a vector product form as  

 ( ) ( )ˆ d sTD ω ω= . (13) 

Hence, the objective error function for designing the prefilter 
( )D z  can be represented by 
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and the solution is 

 11
2

d Q rd d
−= −   (16) 

 
2.2  Design of the subfilters ( )2mG z  

By (7) and (8), the frequency response of ( )0G z  is inher-

ently required to meet 2
Ngje ω− , so its coefficients can be set as 
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(18) can be represented as 
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where ( )D̂ ω  is assumed to be derived by the technique in 
Subsection 2.1. Hence, the objective error function for de-
signing the subfilters ( )2mG z  can be represented by  
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and the desired solution is 
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2.3 Design example  
To evaluate the performance of the presented methods, the 
normalized root-mean-squared error of variable frequency 
response, the maximum absolute error of variable frequency 
response and the maximum absolute group-delay error are 
defined by 
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respectively, where ( , )d pτ ω  and ( , )pτ ω  denote the desired 
group-delay response and the actual group-delay response, 
respectively. To compute the errors in (24), the frequency ω  
and the parameter p  are uniformly sampled at step sizes 

200pω  and 1 60 , respectively. 
Notice that the required numbers of independent coefficients 
for the conventional method [1] [7], Deng’s method [14] and 
the proposed method are 

 ( ) 1 1
2 2 2 2Conventional method : 1N NM M− ++ + , 

 ( ) ( )1 11 1
2 2 2 2 2Deng's method : 1o IVIN NN M M+ +− ++ + + , 

 ( ) 1 1
2 2 2 2Proposed method : 1gd NN M M− −+ + + . 

For system delay, 

 2Conventional method : N , 

 2Deng's method : o IVN N+ , 

 2Proposed method : d gN N+ . 
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Figure 2 – Design of a VFD FIR filter by using the proposed 
method. (a) Magnitude response of the prefilter ( )D z . (b) Magni-
tude of variable frequency response. (c) Absolute error of variable 

frequency response. (d) Group-delay response. (e) Absolute error of 
group-delay response. 

 
Example 1: In this example, a VFD FIR filter is designed 
with 0.92pω π=  and 7M = . For the proposed method, 

62dN =  and 28gN =  are used. Fig. 2(a) presents the mag-

nitude response of the prefilter ( )D z , the magnitude and 
absolute error of variable frequency response are shown in 
Fig. 2(b) and (c), respectively, while Fig. 2(d) and (e) depict 
the group-delay response and the group-delay error, respec-
tively. For comparison, 50N =  is used in the conventional 
method, and 61oN = , 30IN = , 29IVN =  are adopted in 
Deng’s method. In Table 1, the related results are tabulated 
and it can be noted that the accuracy of the proposed system 
is much better than that of the conventional method under the 
cost of larger delay. Also, it has been shown that the number 
of independent coefficients for the proposed method is less 
than that in Deng’s method under comparable performance. 

3. CONCLUSION 

A new structure has been proposed for the design of VFD 
FIR filters in this paper. The structure is derived basing on 

Taylor series expansion of j pe ω− . Comparing with the exist-
ing structures, for example the conventional Farrow structure  
[1] and the hybrid structure proposed by Deng [14], the per-
formance of the proposed structure is much better than that  

Table 1. Comparisons for the design of a VFD FIR filter  
with 0.92pω π=  and 7M = . 

Method Conventional 
method[1][13]

Deng’s method 
[14] 

Proposed 
method 

Filter orders 50N =  

61oN = , 
30IN = , 
29IVN =  

62dN = ,
28gN =  

Number of 
independent 
coefficients

178 139 76

Delay 25 45 45

(%)rmsε  0.01304431 0.00501232 0.00523281

( )410mε
−×  22.489788 6.70100328 5.35265579 

τε  0.11499281 0.05199766 0.04596809
Remark: For the conventional method, the VFD FIR filter is de-

signed by the technique in Section I of [13]. 
 
of the former under the cost of larger delay, and the number 
of independent coefficients is less than that of Deng’s method 
under comparable performance.  
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