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ABSTRACT

In this paper, we propose a new approach to the approximation and
simulation of a real impulse response. Starting from a preliminary
analysis of the mixing time, the impulse response is decomposed in
the time domain considering the early and late reflections. There-
fore, an IIR structure composed of a cascade of second-order sec-
tions and four all-pass filters is employed to synthesize the first part
of the impulse response, using a parametric optimization process
in the frequency domain. Then, a recursive structure composed of
comb and all-pass filters is used to synthesize the late reflections,
exploiting a minimization criterion in the cepstral domain. Sev-
eral results are reported taking into consideration a real impulse re-
sponse, confirming the validity of the proposed approach.

1. INTRODUCTION

In the last 30 years, the problem of simulating real impulse re-
sponses (IRs) by means of digital reverberation systems has been
deeply investigated [1, 2, 3, 4]. Even if the signal processors tech-
nology has been improved rapidly allowing real-time convolution
with long impulse responses, many structures for the approxima-
tion of the impulse response have been proposed in the literature.
A good approximation using shorter filters allows a reduction of
the computational cost, which is always remarkable, as well as the
number of memory access, taking into consideration an embedded
implementation. The most common approach is to simulate the so-
called early reflections by FIR filters and the exponentially decaying
reverberant part by recursive structure like comb filters and all-pass
filters. Therefore, all approaches involve the problem of finding
appropriate model parameters of the recursive structure taking into
account the IR time domain behaviour. In [5, 6] an adaptive pro-
cessing is presented in order to define suitable reverberator coeffi-
cients for the Moorer’s and Schoereder’s model with reference to
a selected IR. However, other different approaches can be found in
the literature taking into consideration different domains of anal-
ysis. In [4], a wavelet analysis using logarithmic multirate filter
banks is used to define the parametric models. A similar approach
is presented in [7] where the Short Time Fourier Transform is ap-
plied to decompose the signal, while Steigliz-McBride algorithm is
used to evaluate the coefficients of the IIR structure. With regards to
the decomposition into early and late reflections, the IR is generally
truncated at an arbitrary point in time, considering that the early re-
flections are usually included within the first 80ms; obviously, this
does not imply a good choice for the definition of the early reflec-
tions depending on the environment characteristics. The selection
of a truncation point that is determined by specific statistical char-
acteristics of an individual IR was explored for the first time in [8],
and then exploited in [9].

Differently from the most common approaches, the proposed
method is totally based on IIR structures. Starting from a prelim-
inary analysis of the mixing time, the impulse response is decom-
posed in the time domain considering the early and late reflections.
Therefore, an IIR structure composed of a cascade of second-order
sections and four all-pass filters, is employed to synthesize the first
part of the impulse response, using a parametric optimization pro-
cess in the frequency domain. Then, a recursive structure composed

Figure 1: General scheme of the algorithm.

of comb and all-pass filters is used to synthesize the late reflections,
exploiting minimization criterion in the cepstral domain.

In Section 2 an accurate description of the entire algorithm is re-
ported, focusing on the automatic parameters setting procedure for
early and late reflections (Sections 2.1 and 2.2, respectively) and on
the used minimization criterion (Section 2.3). Section 3 reports the
obtained experimental results in terms of objective and subjective
measures. Finally, conclusions are drawn in Section 4.

2. ALGORITHM DESCRIPTION

The first step of the algorithm is the partitioning of the early reflec-
tions from the late reverberation, defining the mixing time, i.e., the
time elapsed from early to late reflections. As mentioned before, the
mixing time is generally fixed at an arbitrary point in time consid-
ering that early reflections are included within the first 80ms. How-
ever, since they depend on the environmental characteristics, this
choice does not imply a good definition of the mixing time. There-
fore, different methods have been developed to estimate this value
without knowing the physical characteristics of the environment.
The method used in this work is based on gaussianity estimators [9]
and it evaluates when the temporal distribution of the signal tends
towards a gaussian distribution. Starting from the evaluation of the
mixing time, two different procedures are then applied to evaluate
the parameters of each structure (i.e., early and late reflections) as
shown in Fig. 1: the former is defined in the frequency domain,
while the latter in the cepstral domain.

2.1 Early reflections approximation

The main characteristic of the proposed approach for the approxi-
mation of the first part of the IR resides in the fact that the main
structure is based on a second order sections (SOSs) chain of para-
metric IIR filters. The presented approach derives from a technique
applied to the loudspeaker equalization [10]. As shown in Fig. 2, the
final approximation filter with N sections can be written as follows:

Her(z) =
N

∏
p=1

Hp(z), (1)

where Hp is in the form

Hp(z) =
a2z−2 +a1z−1 +a0

b2z−2 +b1z−1 +1
, (2)

with the parameters defined in Table 1.
Let us consider that the filter to be approximated varies around

the 0-dB line (Fig. 3), it is possible to approximate the real IR us-
ing the proposed structure, compensating the difference between the
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Figure 2: Block diagram of early reflections device.

real frequency response and the reference line. Taking into consid-
eration H, i.e., the Fast Fourier Transform (FFT) of the real IR, an
error function is calculated as follows:

e(w) = 1−
H(w)

Her(w)
. (3)

A frequency warping is applied by defining a new non-uniformly
spaced frequency axis wlog = [w0,w1, · · · ,wN−1]. This is done in
order to respect the logarithmic behavior of the human ear [4, 10].
In this way a new error vector is defined as follows:

e(wk)dB = H(wk)dB −Her(wk)dB, (4)

where wk represents the k-th element of the new logarithmically
spaced frequency axis wlog. Four are the steps of the algorithm:

1. Initialization of the algorithm: H
(1)
er (wk) = 1, p = 1.

2. The error vector is calculated as reported in Eq. (4): the biggest
area is found by searching for the biggest peak/dip in e(wk).
Fig. 3 shows an example of the areas to be searched.

3. The initial parameters for the parametric filter Hp(z) are se-
lected: the central frequency fp is the mean between the zero-
crossing point of the selected area; the gain Gp is the value of
the error at fp; Qp is chosen between 1.5 and 3 for each p filter.

4. Then, an optimization of the initial parameters (i.e., fp, Gp, Qp)
is performed as suggested in [10], using a heuristic approach. It
consists in performing iterative random variations of the param-
eters close to the initial values computed previously using a new
cost function defined as:

elog =
1

n f −ni +1

n f

∑
k=ni

|e(wk)dB| (5)

where n f is the final frequency index and ni the initial one of
the wlog vector.

The last three steps are repeated N − 1 times for the other SOSs
considering:

H
(p+1)
er (wk) = Hp(wk)H

(p)
er (wk) (6)

and p = p+1 for each iteration.

Since the SOSs chain is capable of identifying just the magni-
tude of the frequency response, four all-pass filters have been added

Table 1: Parametric filter coefficients: Ap is the square root of the
filter linear gain Gp, Qp is the quality factor of each filter, w0 =
tan(π fc/ fs) and fs is the sampling frequency.

a0 a1 a2

(1+
Ap

Qp
w0 +w2

0) (2w2
0 −2) (1−

Ap

Qp
w0 +w2

0)

b0 b1 b2

(1+
Qp

Ap
w0 +w2

0) (2w2
0 −2) (1−

Qp

Ap
w0 +w2
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Figure 3: Search of biggest area and design of first SOS.

in order to supply the correct phase of the artificial filters. The fre-
quency response of an all-pass filter is given:

Hal
(z) =

−g+ z−D

1−gz−D
(7)

with l = 1, · · · ,4 and g, D the parameters to be set. Then, a
minimization procedure is applied to the entire structure using the
method described in Sec. 2.3, taking into consideration the follow-
ing loss function:

L1 =
1

N

N−1

∑
n=0

(φr(n)−φa(n)) , (8)

where φr is the phase response of the real IR and φa is the phase
response of the structure described in Fig. 2.

2.2 Late reflections approximation

The late reflection approximation is realized by an IIR filters net-
work simulating the reverberation tail. In details, it is composed
of four all-pass filters in series and eight parallel LBCF (Low-pass
feedBack Comb Filters) for each audio channel, as shown in Fig. 4.
The comb filter is implemented using a delay-line whose output is
low-pass filtered and added to the input. The overall LBCF transfer
function is:

HLBCF(z) =
1

1−gcLp(z)z−n
=

1

1−gc
1−d

1−dz−1 z−n
, (9)

where gc and d are two different parameters that permit to change
the generated reverberation effect. The variable gain (gc) sets the
reverberation time (T60) while the damp (d) sets the air damping at
high frequencies.

The frequency response of an all-pass filter is given by:

HAP(z) =
−1+(1+ga)z

−n

1−gaz−n
. (10)

Figure 4: Block diagram of late reflections device.
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An all-pass filter is obtained only for ga
∼= 0.618.

Obviously, the number of comb and all-pass filters can be in-
creased as pointed out in [3] where a feedback delay network is
used; this leads to a more precise approximation but also to a more
complex structure with a great computational complexity. There-
fore, a compromise between computational efficiency and approxi-
mation quality has to be achieved: the structure used in the proposed
approach (e.g., Nl = 8 and Nap = 4) is sufficient to well identify late
reflections, as will be demonstrated in Sec. 3.

Starting from Eq. 9, Eq. 10, and Fig. 4, 17 parameters (gc, d, ga,
one delay, one gain, eight delay lines of the LBCF filters and four
delay lines of the all-pass filters) have to be set in order to make
the artificial IR as similar as possible to the desired IR. Therefore,
an adaptation procedure has to be used for iteratively finding these
parameters, taking into consideration the following loss function:

L2 = max







max







√

√

√

√

R

∑
i=1

M

∑
j=1

[Tr(i, j)−Ta(i, j)]2













, (11)

where Tr is a matrix which represents the Mel-Frequency Cepstral
Coefficients (MFCC) derived from the real IR, Ta is the MFCC ma-
trix of the approximated IR [11], R is the length of the analysis
window, and M is the number of MFCC. The MFCC cepstral coef-
ficients are derived from the IR as suggested in [12]: the FFT of the
windowed impulse response is firstly computed to derive the energy
spectrum and the result is warped onto the mel scale using a filter
bank; then, the MFCC coefficients are calculated as the inverse FFT
of the logarithm of the power spectrum. The minimization proce-
dure applied to this loss function is described in Sec. 2.3, taking into
consideration M = 26 MFCC, a window of length R = 256 with an
overlap of 50%.

2.3 Minimization procedure

The minimization criterion is based on Simultaneous Perturbation
Stochastic Approximation (SPSA) [5, 9] as shown in Fig. 5. Taking
into account a minimization problem, where L(θ) is the loss func-
tion and θ is the p-dimensional vector of parameters, the steepest
descent method can be used to find the set of parameters θ∗ that
minimize L(θ):

∂L(θ)

∂θ

∣

∣

∣

∣

θ=θ ∗

= 0. (12)

However, when the system is characterized by a large number of pa-
rameters (high value of p), it is really hard to determine the gradient
value. In this case, SPSA procedure allows to obtain an approxima-
tion of the gradient with two measures of the loss function, con-
sidering a large number of variables to be optimized. The general
recursive form of a classic minimization problem is:

θk+1 = θk −ak

∂L(θk)

∂θk

, (13)

where k is the iteration number. By using the SPSA technique,
Eq. 13 can be modified as:

θk+1 = θk −akgk(θk), (14)

where ak is an arbitrary gain sequence and gk is the gradient esti-

mation
∂L(θk)

∂θk
on the k−th iteration. Considering a simultaneous

perturbation, the value of gk can be computed as

gk(θk) =
y(θk + ck∆k)− y(θk − ck∆k)

2ck







∆k1

...
∆kp







−1

, (15)

Figure 5: General scheme of the adaption procedure: F(z,θ) is the
transfer function of whole late reflections structure while HTarget

represents the late reflections of the real impulse response.

where y(·) denotes a measure of the loss function, ck is a gain se-
quence, and ∆(k) is a p-dimensional random vector.

The following three conditions have to be respected ensuring
the system stability:

E
{

∣

∣∆ki

∣

∣

−1
}

< ∞ ∀i = 1, . . . , p (16)

lim
k→∞

ak = 0; (17)

lim
k→∞

ck = 0; (18)

where ∆k is a vector with a Bernoulli statistics and value +1 or −1.
The sequences ak and ck can be written as follows:

ak =
a0

(A+ k +1)
α (19)

ck =
c0

(k +1)
γ, (20)

with A, α , γ , a0 and c0 arbitrary constants. The following values
are used as proposed in [13]: A = 1, α = 0.602, γ = 0.101, and
c0 = 0.01. a0 is a vector of constants that varies for each parameter
to be found in the optimization process.

2.4 Computational complexity

In order to evaluate the performance of the proposed algorithm, the
computational complexity in terms of the needed number of multi-
plications and additions, used for the filtering operations, has been

Table 2: Comparison between the proposed method and the FIR fil-
ter approach[14] in terms of computational complexity for filtering
operation. N is the number of SOS filters and Na is the number
of all-pass filters for the early reflection part. Nl is the number of
comb filters and Nap is the number of all-pass filters in the late re-
flection part. K is the frame size, L = 2K is the overlap while P is
the number of partitions for FIR filtering approach.

Proposed FIR

approach implementation

Add
4N +2Na+

1
K [2L log2(L)+2L(P−1)]+

2Nl +3Nap 2 1
K (LP)

Mul
5N +2Na+

1
K [L log2(L)]+

3Nl +2Nap 4 1
K (LP)
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Figure 6: (a) Real impulse response of a room ( fs = 48000Hz). (b)
Artificial impulse response derived with the proposed approach.

calculated. Table 2 reports the computational load of the proposed
technique compared with the FIR filter basic approach using an uni-
form partitioned overlap and save technique [8, 9, 14]. It is clear
that the use of IIR filters improves the performance in terms of re-
quired multiplications and memory employed for the memorization
of the filters taps. Taking into consideration the numbers used for
the experimental results (e.g., N = 20, Na = 4, Nl = 8, Nap = 4,
K = 64, L = 128, P = 584 ) and Table 2, we have that the overall
number of multiplications for the proposed approach is 140 while
for the FIR approach is 4686. Considering the overall number of
additions, we have 116 additions for the proposed approach and
4696 for the FIR approach. If we consider the memory usage which
is an important parameter in the case of embedded system imple-
mentation, the proposed approach has a lower request (e.g., 10000
samples) than the other method (e.g., 300000 samples). Therefore,
the proposed approach has lower computational complexity which
can increase taking into consideration a more complicated struc-
ture: there is a compromise between the requested accuracy and the
maximum computational load. However, we will show through the
experimental results that it is possible to have a good approxima-
tion of the IR taking into consideration a simple structure with low
computational complexity.

3. SIMULATION RESULTS

Different tests have been carried out in order to evaluate the approxi-
mation quality, in terms of subjective evaluation and objective mea-
sures, comparing the approximated signal with the real one. The
automatic procedure for the parameters setting has been tested with
different real IRs, but for the sake of brevity just the results for a
room environment is reported: Fig. 6(a) shows the time behaviour
of the real IR with a T60 of 683ms, represented as a FIR filter of
32768 samples. First of all, the mixing time has been estimated us-
ing two gaussian estimators (e.g., Kurtosis and Mean Absolute De-
viation/Standard Deviation ratio) as described in [9]: for the used
real IR we have a mixing time of 30ms. Then, the proposed ap-
proach has been applied taking into consideration a structure with
N = 20 filters and Na = 4 all-pass filters for the early reflection
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Figure 7: (a) represents the magnitude response of the real IR and of
the artificial one and (b) reports the phase of the real IR and of the
artificial response without the all-pass filters in the early response
approximation (Artificial 2) and with the all-pass filters (Artificial
1).

structure and Nl = 8 comb filters and Nap = 4 all-pass filters for
the late reflections part. Regarding the early reflections structure,
Fig. 7(a) and Fig. 7(b) show a comparison of the magnitude and
phase response of the real and artificial IRs, respectively. The artifi-
cial response is quite similar to the original one but the differences
are due to the number of filters used for the structure. It is possible
to have a more accurate artificial IR but we have tested that this ap-
proximation is sufficient to have the same reverberation perception
of the real one. Fig. 6(b) shows the time response of the overall
artificial IR: it looks very similar to the real IR (Fig. 6(a)), as it
was confirmed by the listening tests. Fig. 8(a) shows the Energy
Decay Relief (EDR) [9] of the real IR, while Fig. 8(b) represents
the EDR of the approximated IR: they result very similar and this
is supported by the listening tests. The behaviour of the approxi-
mated IR is slightly smoothed since it is calculated considering the
smoothed version of the real IR. Moreover, it is worth nothing that
as reported in [15] the human ear cannot detect spectrum changes of
±2dB with respect to the level in the neighbouring bands; therefore,
the difference between Fig. 8(a) and Fig. 8(b) can be neglected as
also confirmed by the listening tests.

Listening tests have been carried out in order to assess the qual-
ity of the proposed approximation. The subject is required to com-
pare the stimuli with the original signal and to score it according to
a discrete quality scale divided into five intervals (i.e., Bad, Poor,
Fair, Good, and Excellent) [16]. The scores are then normalized in
the range between 0 and 100, where 0 corresponds to the bottom
of the scale (Bad). A grade of 100 is assigned when the stimulus
is identified as equal to the reference signal. Three test sessions
were carried out taking into consideration a different number of the
SOSs (i.e., N), reproducing the sound track through a PC with pro-
fessional headphone (i.e., AKG). The number of subjects involved
was 10 (8 males and 2 females), as suggested in [16], with ages
ranging from 21 to 35. The data analysis is performed as an av-
erage across subjects of the score associated with each stimulus.
Fig. 9 reports the results considering 15, 30, and 50 SOSs, keeping
fixed the structure of the late reflections: it is evident that for all the
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(a)

(b)

Figure 8: EDR: (a) Real impulse response, (b) approximated im-
pulse response with N = 20, Na = 4, Nl = 8, Nap = 4.

tests, the listeners did not find significant differences between the
approximated IR and the real one, since all the scores are contained
between 85 and 95, i.e., Good and Excellent intervals. Furthermore,
increasing the number N of SOSs, the mean score increases too; this
is due to the fact that the real IR is better approximated. However,
good results can be achieved also considering less sections, with a
clear computational advantage.

4. CONCLUSION

A novel approach for the approximation and simulation of a real
impulse response has been presented. After a preliminary analy-
sis of the mixing time, the impulse response is decomposed in the
time domain considering the early and late reflections. The early
reflections approximation is achieved taking into consideration an
IIR structure composed of a cascade of second-order sections, em-
ploying a frequency domain parametric optimization process and
four all-pass filters to better approximate the phase response of the
real IR, using a minimization criterion. Then, the late reflections
approximation is based on a recursive structure composed of comb
and all-pass filters, exploiting a minimization criterion in the cep-

Figure 9: Listening tests: mean score obtained over each test.

stral domain. Several results are reported taking into consideration
objective and subjective tests for real impulse responses. The re-
sults obtained in the objective tests in terms of energy decay relief
have been confirmed by the subjective listening tests: the listeners
did not find differences between the approximated IR and the real
one. Future works will be oriented to the real time implementation
of the approach considering an embedded platform.
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