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ABSTRACT
There is a growing interest in multi-modal signal processing:
sets of related signals are jointly processed to extract infor-
mation that is otherwise hidden when considering the differ-
ent modalities independently. One popular problem in cross-
modal processing is the localization of visual sources syn-
chronous with audio stimuli. Audiovisual source localization
allows to pinpoint and extract salient audio-video informa-
tion from a scene, enabling innovative applications in com-
munication, interaction and gaming. In this paper we aim
to achieve cross-modal localization in real-time using single
camera, single microphone data. Existing works use com-
plex statistical data models or complex representations of
audio and video features, limiting their applicability in real-
time systems. In this paper we propose a simple yet effec-
tive algorithm that allows to detect and localize in real-time
synchronous audio-video sources. The proposed approach
obtains the best speaker localization performances reported
to date on the popular CUAVE database, while running in
real-time and without requiring any training.

1. INTRODUCTION

Audiovisual communication systems are becoming increas-
ingly popular and practically useful in many application do-
mains. Video cameras and microphones in laptops are com-
monly used for video chatting and multi-party video confer-
encing, while gaming and social network applications might
want to integrate the users’ faces and voices in users avatars.
A key component for these applications is the association, at
any given moment in time, of the speech signal in the au-
dio track with the video region containing the corresponding
speaker. Audiovisual speaker localization allows to extract
the relevant audio-video information (e.g. the speaker’s face
with his/her speech), while the cost of storing and sending
this information is much lower. Besides, relevant audiovi-
sual data can be specifically protected using error protection
mechanisms or encrypted for privacy reasons. This infor-
mation can be easily used to create realistic avatars and it
will enable smart videoconferencing tools such as automatic
meeting summarization or virtual director applications.

Several methods exist to estimate the spatial location of
sound sources using multi-microphone systems and stereo
triangulation [16, 23]. Here instead we want to achieve
this task using common hardware available in laptops and
phones, i.e. one camera and one microphone, exploiting the
synchrony between audio and video signals. In fact, several
studies have demonstrated that humans continuously com-
bine audio-video cues to enhance our understanding of the
environment: for example, sounds appear to be produced by
motion synchronous with acoustic stimuli [5, 19].

These observations motivated Hershey and Movellan [8]
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Figure 1: Audiovisual scene featuring two individuals, each
one of which may be speaking at any time. In this work we
analyze one audio track (left) and several video streams (two
here, within the white boxes on the right), each one showing
the face of one speaker. Our goal is to associate the audio
with the proper video stream in real-time.

to design an algorithm to locate sounds using audio-video
synchrony. The correlation between audio and video was
measured using the correlation coefficient between the en-
ergy of an audio track and the value of single pixels. Suc-
cessive studies in the field [4, 6, 7, 9, 14, 17] focused on the
statistical modeling of the relationship between simple audio
and video features, proposing audiovisual association strate-
gies based on Canonical Correlation Analysis [9], maximiza-
tion of Mutual Information [4,6,14], learning Gaussian Mix-
ture Models [7] or Hidden Markov Models [14, 17]. While
these works focus on the modeling of the correlation between
basic audiovisual features (audio energy and pixel values),
in [11, 12] we propose to model audio and video data using
features that capture structural signal properties. Video se-
quences are expressed as sparse sums of time-evolving visual
structures, while audio tracks are expressed as sums of Ga-
bor atoms. Audiovisual correspondences are established by
checking the co-occurrence of these audio-video structures
in a way that is pretty similar to what we humans do.

In all existing works, either complex statistical models
of audiovisual dependencies have to be estimated [4, 6, 7, 9,
14, 17], or computationally intensive audiovisual data repre-
sentations have to be computed [11, 12]. These factors limit
the applicability of existing approaches, because audiovisual
localization has to be performed in real-time for interaction
and communication applications. In this paper we propose
a simple yet effective algorithm that can detect in real-time
synchronous audio-video structures, allowing to localize au-
diovisual sources. Audio and video structures are defined
respectively as concentrations of acoustic energy and mo-
tion of video regions. We consider audiovisual scenes featur-
ing several persons like the one depicted in Fig. 1, in which
each individual may be speaking at any time. Having a one-
microphone audio recording of the scene and several video
streams, one for each subject in the scene, our objective is
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to associate the audio data with the proper speaker (video
stream) at any given time. Furthermore, the whole algorith-
mic chain, comprising face detection and audiovisual associ-
ation, has to be implementable in real-time. We demonstrate
that our method obtains the best performances reported to
date on the standard audiovisual CUAVE database [15] for
speaker association, while working in real-time and without
requiring any labeled training data or any scene or lip model.

2. AUDIOVISUAL SPEAKER LOCALIZATION

In this section we describe the proposed audiovisual speaker
localization algorithm. The audio signal is represented us-
ing a simple feature described in Sec. 2.1. Let us assume
here that the video is pre-processed using a face detector or
tracker to extract video streams showing the speakers’ faces.
The type and amount of motion present in each video stream
is estimated using a Block Matching algorithm, that is pre-
sented in Sec. 2.2. The way audio-video representations are
combined to measure their degree of synchrony is described
in Sec. 2.3. Finally, in Sec. 2.4 we describe how we associate
the audio track with the correct speaker to localize him/her.

2.1 Audio Representation
As mentioned above, we look for synchrony between audio-
video events. An interesting audio event, from our point of
view, is the presence of a sound. Thus we estimate an audio
feature that assesses the presence or absence of an acoustic
event. Finer audio features are unnecessary in this setting,
but can be considered to perform more complex tasks.

Here the audio signal, a(t), is represented using a simple
feature that estimates the acoustic energy contained in each
frame. The audio feature, fa(t), is computed as:

fa(t) = downsample(avg(|a(t)|2 ,winSize),d) . (1)

The function avg(x(t),winSize) computes the running av-
erage of the signal x(t) over a window of winSize sam-
ples. We choose an averaging window that spans two video
frames, i.e. winSize = 2 ·νa/νv, with νa and νv respectively
the audio and video sampling frequencies. The function
downsample(x(t),d) decreases the sampling rate of x(t) by
a factor d, keeping every dth sample. Here the feature fa(t) is
down-sampled such that it has the same temporal sampling
rate of the video, thus d = νa/νv. The audio feature fa(t) is
depicted in Fig. 2 (b).

2.2 Video Representation
In this paper we assume that a real-time face detector and/or
tracker extracts the face region of the individuals present in
the scene. One such detector could be the very popular Viola-
Jones detector [18], or one of its variants, which are nowa-
days ubiquitously present in consumer electronics products.
Thus, we have a series of video streams, each one showing
the face of a person present in the scene. We estimate the
motion in these video streams using the Block Matching Al-
gorithm (BMA). BMA is a popular and effective algorithm
that is used in virtually any video coding system [21]. We
decided to use this approach because the motion information
in the form of motion vectors is already embedded in any
video encoded data: this means that the motion information
can be obtained with very small or no computational over-
head. Please note however that for the sake of simplicity, in

this paper we re-estimate the video motion using the BMA
applied to decoded video data.

The underlying assumption behind motion estimation is
that changes between two consecutive (or close enough)
frames are due to motion, and thus every structure in the
current frame has a corresponding structure in the previous
reference frame. The main idea of block matching is to di-
vide the current frame into a matrix of macroblocks (MB)
that are then compared with the corresponding block and its
adjacent neighbors in the reference frame to create a vector
that assesses the movement of a MB from the reference to
the current frame. The matching of one MB with another
is based on the output of a cost function. The MB that re-
sults in the least cost is the one that more closely matches
the current block. Various cost functions exist, e.g. mean ab-
solute distance (MAD), mean squared distance (MSD), and
normalized cross-correlation (NCC) [20]. Probably the most
popular and less computationally expensive, which we use
here, is the mean absolute distance:

MAD =
1

M2

M−1

∑
i=0

M−1

∑
j=0

|ci j − ri j|, (2)

where M is the side of the macroblock and ci j and ri j are the
pixels being compared in current and reference MB, respec-
tively. The search area for matching a MB is constrained up
to p pixels on the fours sides of the corresponding MB in pre-
vious frame. Larger motions require a larger p, and the larger
the search parameter p the more computationally expensive
the process of motion estimation becomes.

Another important step of a BMA is the search strategy
employed to match a MB from one frame to the other. The
exhaustive search (or Full Search) algorithm is typically not
used because of its computational complexity: it calculates
the cost function at each possible location in the search win-
dow. Several methods have been developed during the last
decades to find a trade-off between motion estimation accu-
racy and computational complexity [20]. In this work we es-
timate MB motion using a block matching algorithm called
Adaptive Rood Pattern Search (ARPS) [13]. This method ex-
ploits the observation that motion in a frame is usually coher-
ent. Thus, if the macroblocks around the current MB moved
in a particular direction then there is a high probability that
the current MB will also have a similar motion vector. This
algorithm uses the motion vector of the MB to its immedi-
ate left to predict its own motion vector, greatly reducing the
search area. In this work we use a slightly modified version
of the ARPS algorithm implemented in Matlab that is pub-
licly available at [1].

2.3 Audiovisual Synchrony Assessment
In this section we describe how we estimate the degree
of synchrony between motion of visual structures (mac-
roblocks) and acoustic activity. We will then point out in the
next section how this synchrony measure is used to localize
the speaker in the sequence.

For each video stream, we analyze only the lower half
of the image, representing broadly the mouth region. This
will help to filter out spurious movements and to speed-up
the computation. The mouth region is subdivided into N
macroblocks and for each of them, using BMA, we obtain
a motion vector describing its motion from one frame to the
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Figure 2: Scheme of the computation of the synchronization score sn for one MB with ∆ = 180 frames. Starting from the
original audiovisual sequence (a), we compute the audio feature fa(t), shown in (b). Faces are detected in the video signal
(white boxes around the individuals’ faces) and the lower halves are subdivided into macroblocks. For each MB, the motion
feature fvn(t) is computed. The feature associated with one MB next to the speaker’s mouth (highlighted in white on the right
person) is depicted in (c). From these signals we extract the audio energy peaks and the displacement peaks and the activation
vectors ya(t) and yvn(t) are built (d–e). The synchronization score sn is constructed by computing the scalar product between
the two activation vectors (f).

other. Please note that the motion vectors are not estimated
on the original images, but they are computed on the mouth
region of the aligned faces, thus filtering out head move-
ments. The motion of each MB is characterized by a vertical
and an horizontal component. For each MB we compute a
feature, fvn(t),n = 1, . . . ,N, which is the absolute value of
the vertical displacement. We consider only the vertical mo-
tion since we consider a speaker localization task and typical
mouth movements occur along the vertical direction.

The considered video feature reflects the movement,
from frame to frame, of the image structures present in the
MB. The audio feature indicates the acoustic energy content
at a given time instant. Peaks in such signals suggest the
presence of an event, e.g. the movement of the lips in the
video and the presence of a sound. If those audio and video
peaks occur at time instants that are temporally close, we
are in the presence of an audiovisual event that reflects two
expressions (acoustic and visual signals) of the same phys-
ical phenomenon (production of a sound). For a given fea-
ture vector fx(t), x = a,v, we build an activation vector yx(t)
which is based on the information about the peaks locations.
First, we detect the peaks in the audio feature and in each of
the N video features, obtaining vectors which equal 1 where
peaks occur and 0 otherwise. Then, such vectors are filtered
with a rectangular window of size W . The filter models de-
lays and uncertainty, since it rarely happens that activation
peaks occur exactly at the same time instant in both acoustic
and video feature vectors. In our experiments with videos
recorded at 29.97 frames per second (fps), we have obtained
similar results using values of W between 3 and 9. All the
results presented in the following are obtained with W = 7.

We end up with one activation vector for the audio, ya(t),
and N activation vectors yvn(t), one for each MB. The scalar
product between ya(t) and yvn(t) constructed over a given

observation time slot ∆ = [T1,T2] counts the number of times
the audio and video activation vectors are 1 at the same time
and thus gives an estimate of the degree of synchrony be-
tween the audio track and the motion in the MB. We define a
simple audiovisual co-occurence measure, the synchroniza-
tion score s, as

sn = 〈ya(t),yvn(t)〉, with t ∈ ∆ , (3)

where 〈·, ·〉 indicates the scalar product between vectors. The
higher the value of the synchronization score, the more syn-
chronous are the video structures with the audio track. Fig. 2
summarizes the computation of the synchronization score sn
for one MB with an analysis window ∆ = 180 frames.

2.4 Active Speaker Localization
Considering an analysis window ∆, the total synchronization
score, S, of a given video stream over ∆ is S = ∑N−1

n=0 sn. The
signals are analyzed using a sliding window ∆ that is shifted
along the sequence with a step δ that is typically equal or
smaller than ∆. This is done to guarantee a certain temporal
continuity. The active speaker is detected every δ frames as
the one in the video stream exhibiting the highest value of
total synchronization score S over the analysis window. This
detection criterion has been chosen here for the sake of sim-
plicity. Clearly the synchronization scores can be compared
to a threshold, as e.g. in [12], so that if several synchroniza-
tion scores (or none of them) are above the threshold, several
speakers (or none) are detected as active.

The proposed algorithm is summarized in Algorithm 1.
For simplicity, in Algorithm 1 we describe a system that an-
alyzes a video file of length T frames, but clearly the pro-
cedure can be performed in real-time on a video stream of
unknown duration.
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Algorithm 1: Pseudo-code of the proposed audiovisual
speaker detection system.

Input: Video V of duration T frames.
Output: Active speaker k̂t at each time step t.
for t = 1 : δ : T do

1. Detect Kt faces;
2. Estimate audio energy;
3. Compute audio activation vector;
for kt = 1 : Kt do

4. Divide lower half of stream kt into N MB;
for n = 1 : N do

5. Estimate motion vectors using BMA;
6. Compute video activation vectors;
7. Compute sn using Eq. (3);

end
8. Compute Sk for stream kt : Sk = ∑n sn ;

end
9. Detect stream k̂t containing the active speaker:

k̂t = argmaxk Sk .
end

3. EXPERIMENTS

We show here how the proposed system is used to localize
the source of an audio signal in real-world video sequences.
Given a single audio track and several video streams, one
for each speaker in a scene, we want to determine who, if
anyone, is speaking at any given time instant.

The proposed algorithm is tested on the CUAVE cor-
pus [15], a multiple speaker audio-visual corpus of spoken
connected digits. A frame from one of the sequences of the
database is shown in Fig. 3 (left). We use the 22 clips from
the groups set in which two speakers take turns reading digits
and then proceed to speak simultaneously. In order to com-
pare our results to [4, 7, 14, 17] we consider the section of
alternating speech and use the ground truth speaker segmen-
tation from [3]. To evaluate the performances of our speaker
localization algorithm we adopt the recommendations in [3]:
a detection is considered correct if the detector’s output for
a given time window matches the most present label in the
corresponding ground truth window. Siracusa and Fisher ex-
tracted the speakers’ faces from each clip of the database and
they made them publicly available, together with the ground
truth labels, at [2]. The faces are grayscale and normalized
to 75 × 50 pixels. A face detector and correlation track-
ing of the nose region is used to extract aligned faces. The
faces extracted from the sequence in Fig. 3 (left) are shown
in Fig. 3 (right). The dataset consists of videos sampled at
29.97 fps with corresponding audio tracks at 44 kHz, which
are re-sampled here at 8 kHz.

The video streams showing the speakers’ faces are ana-
lyzed using macroblocks of size M = 8×8 pixels. The search
parameter p is kept fixed to a value of 4 pixels. In these rather
static sequences, the increase of the value of p does not bring
any benefit and only increases the computational complex-
ity. Concerning the audiovisual association algorithm, ex-
periments have been carried out varying δ and ∆ between
the values 15, 20, 30, 40 and 60 frames. The optimal values
for these variables are scene-dependent: in a scene showing
a very dynamic conversation, it could be beneficial to decide
often who is speaking, while in a slowly paced conversation,

Figure 3: Frame extracted from one sequence of the CUAVE
audiovisual database (left) and extracted faces of the people
present in the video (right).

∆
15 20 30 40 60

δ

15 86% 89.1 % 90.1% 88.4% 84.8%
20 86.7% 90.6% 91.7% 89.4% 85.9%
30 84.6% 90.8% 93.4% 91.6% 88 %
40 82.7% 88.8% 91.5% 90.4% 88.5%
60 74.7% 82.8% 86.2% 90.1% 86.8%

Table 1: Average detection accuracy on the CUAVE database
for different values of δ and ∆ expressed in frames.

the decision can be taken less often using more data to pro-
vide a more reliable outcome.

Table 1 summarizes the results obtained by the proposed
method in term of percentage of test points at which the ac-
tual speaker is correctly detected for different combinations
of values of δ and ∆. The percentages represent the aver-
age accuracy over the whole groups section of the CUAVE
dataset. Our approach achieves very high accuracy with all
settings. As it might be expected, accuracy degrades when
the analysis window ∆ is too long or too short (60 or 15
frames) and when the values of δ and ∆ are very different.
The best performances are obtained for δ = ∆ = 30 frames
(i.e. 1 second), with a correct detection rate of 93.41%. This
result compares extremely favorably with existing audiovi-
sual speaker localization methods that have been tested in
the same database. Nock et al. [14], Gurban and Thiran [7]
and Besson et al. [4] consider only the last 12 sequences of
the database (g11 to g22) for testing because these meth-
ods require training and the first 10 sequences of the cor-
pus are used for this purpose. Furthermore, the algorithms
in [4, 7, 14] exclude silent frames using dedicated silence
detectors. Nock et al. [14] achieve 76% average accuracy,
Gurban and Thiran [7] 87.4% and Besson et al. [4] 85%.
Siracusa and Fisher [17] instead use the whole database for
testing as they adopt an online learning method, achieving
88.11% accuracy. The results are summarized in Table 2.

In the current experimental setting, 24 motion vectors
have to be estimated per speaker every frame, thus 48 in to-
tal for the two individuals in the test sequences. In Matlab
on a 2.33GHz processor with 2Gb RAM, the computation of
the motion vectors takes 0.0155s per frame while the audio-
visual association and speaker detection algorithm employs
0.0013s per image. The whole processing in Matlab, exclud-
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Method Mean Accuracy
Nock et al. [14] 76 %

Gurban and Thiran [7] 87.4 %
Siracusa and Fisher [17] 88.11 %

Besson et al. [4] 85 %
Proposed 93.41 %

Table 2: Average speaker localization results on the CUAVE
corpus. Our approach outperforms all existing methods
tested on the dataset

ing face detection, runs at 60 fps, more than real-time. Fur-
thermore, as already underlined motion vectors do not have
to be re-computed as they could be extracted directly from
the compressed video sequence, saving a great amount of
processing time. Although we do not know the computa-
tional complexity of the face detector employed to extract
the faces in [17] and used for these experiments, common
face detector implementations run typically at about 20 fps,
and fast hardware-efficient implementations are being devel-
oped that can achieve much higher performances (> 100
fps) [10, 22]. Since we do not need to detect the speakers’
faces every frame (2-3 times every second are sufficient to
guarantee a smooth behavior), we can safely claim that the
proposed system is implementable in real-time on commonly
available hardware.

4. DISCUSSION

In this paper we have introduced a method to detect and
localize speakers in audiovisual scenes using only the data
from one microphone and one camera. The proposed system
first detects the faces of the individuals present in the scene
and then computes motion within the face regions using a
Block Matching Algorithm. The co-occurrence of relevant
motion and audio energy peaks is used to associate the audio
content to the corresponding speaker at any given time in-
stant, thus localizing the active speaker. Our method is sim-
ple enough to run in real-time on common processors and
achieves a speaker localization accuracy of 93.41% on the
standard CUAVE audiovisual dataset, outperforming all pub-
lished algorithms tested on this corpus. In contrast with most
of the existing methods, no training on labeled data nor si-
lence detector or scene model are required, which makes the
proposed approach flexible and general.
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