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ABSTRACT
On the basis of the use of the generalized likelihood ratio test
(GLRT) and model order selection techniques, an improved
event detector is proposed herein by incorporating the spatial
correlation existing in measurements coming from neighbor-
ing wireless sensors. Such a spatial dependence is proposed
to be extracted through the use of the so-called signature vec-
tors. These vectors incorporate the a-priori knowledge of the
effect that the event will have on the sensor field. For the
proposed detector, analytical and empirical results are pro-
vided, showing a significant gain in performance compared
to traditional approaches.

1. INTRODUCTION
A wireless sensor network (WSN) typically consists of a
large number of inexpensive sensor nodes that are distributed
over a large area. For the management of these large number
of sensors, centralized, decentralized or distributed strategies
can be devised [1], [2]. Among these three approaches, cen-
tralized detection involves placing all the intelligence of the
network on a single point. Then, based on all the received
data from sensor nodes, the fusion center makes a global de-
cision on whether the event of interest is present or not. Al-
though centralized detection systems have been deeply stud-
ied in the past decades, there are still some problems to be
solved in the context of WSN. One of these problems ap-
pears in dense and largely deployed WSN, where observa-
tions appear to be highly correlated in the space domain due
to spatial proximity among sensors [3]. In contrast, mostly
current detection techniques are based on energy detection
thus ignoring the important cross-sensor correlation informa-
tion between these closely located sensors [4]. Moreover, the
region where the event happens within a dense WSN usually
spans across an area which includes just a subset of all the
sensor nodes. Those sensors far away from the event are typ-
ically unable to receive the signal emitted from the event due
to limited sensing ranges. On the other hand, sensors closer
to the event will often be closely spaced, thus forming a clus-
ter with highly correlated observations [3]. The presence of
this structure within the received samples at the fusion center
may be used to further improve the event detection perfor-
mance.

There have been some attempts to incorporate correlated
measurements into the formulation of signal detection prob-
lems. However, many of these studies consider the presence
of correlation as a deleterious effect, or they focus on the
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discrimination between correlated and independent observa-
tions. This is the case of [5, Ch. 9-10] which discusses in
detail the multivariate detector for testing the independence
of random observations with the help of the GLRT on the
basis of covariance matrices. These GLRT-based detectors
typically end up with a simple quotient between the determi-
nant of the sample covariance matrix and the determinant of
its diagonal version. Recently, these covariance-based tests
have been widely applied to the detection of signals in dis-
tributed sensor nodes, especially in the context of cognitive
radios. In [6], the authors sense primary signals in cognitive
radios by using the ratio of maximum to minimum eigen-
values of sample covariance matrices. A similar approach
is also discussed in [7], where the authors use the ratio be-
tween the sum of elements of the sample covariance matrix
and the sum of diagonal elements of that matrix. However,
these detectors typically focus on detecting the presence of
correlated data, as a possible indication that an event may
be present within the data. They do not focus, instead, on
exploiting the actual correlation structure that impinges onto
the sensor field when an emitting target is present.

Another problem of interest is that in practice, not all
the measurements that arrive at the fusion center do contain
useful signal contribution. Due to limitations in the sens-
ing range, some sensors observe strong signals and the rest
receive small signal or no signal at all. This problem has
already been addressed in [8], where a signal detection tech-
nique is proposed in order to identify the useful observations
(i.e. those containing signal plus noise) among the set of all
received measurements. The problem is formulated in terms
of the Multifamily Likelihood Ratio Test (MFLRT), a joint
detection and model order criterion which selects the cor-
rect subset of samples for detecting the presence of unknown
nonzero signal samples [8].

Inspired by the approach in [8], a novel detector is pro-
posed in this paper. Not only it exploits the selection of the
useful set of samples in order to reject noise, as in [8], but it
also takes advantage of the signal correlation occurring with
an emitting target is present, based on the concept of signa-
tures. The concept of signatures would be somehow equiva-
lent to steering vectors in the field of array signal processing.
Signatures are adopted herein as a way to capture the struc-
ture of spatially correlated measurements between neighbor-
ing sensor nodes. Each sensor node will have a signature
vector representing its physical-layer connectivity with the
rest of the sensors in the field. As it will be shown later on,
this approach is found to significantly improve the detection
performance compared to traditional approaches.

The paper is organized as follows. In Section 2, signal
models and details of the problem are presented. Section 3
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introduces a modification of the GLRT and proposes a novel
detector by using the signature matrix. Section 4 discuses
the performances of the detector while simulation results are
presented in 5 and Section 6 concludes the work.

2. PROBLEM FORMULATION
We consider a sensor network consisting of K deployed sen-
sor nodes in a large sensor field. The task of these sensor
nodes is to act as intercept receivers and observe the field
for detecting the presence of an emitting source (i.e. also re-
ferred herein as an event or a target). To do so, the sensors
report their observations to the fusion center where the sig-
nal processing and the final decision is drawn. In the sequel,
a large scale WSN is assumed so that when the event hap-
pens, some nodes receive a large signal amplitude and oth-
ers receive very small or zero amplitudes. The amplitude Ai
received at the i-th sensor node is considered as a unknown
deterministic parameter since both the amplitude of the emit-
ting source A0 and its distance to the sensor are unknown.
The emitted signal power A20 is assumed to decay isotropi-
cally as a function of the distance di,t between the emitting
source and the i-th sensor (i.e. A20/d

β
i,t , β is the known path

loss exponent). At the fusion center, the signal model for the
received measurements can be formulated as:

x = s+w (1)

where s is a (K × 1) vector containing samples of the un-
known deterministic received signal at each sensor, and w
is a (K × 1) vector containing AWGN samples, with w ∼
N (0,σ2wIK) and IK the (K×K) identity matrix. We assume
that the noise variance σ2w is known.
2.1 Signal model without spatial information
We consider very large sensor network that is why even
though we have K non-zero received samples in x but the
number (i.e. the length ) of non-zero samples in vector s
may be less than K. The sensor nodes corresponding to these
non-zero samples are named as active sensors whose num-
ber is unknown to the fusion center. If we assume that there
are L non-zero samples in s then the model order of (1) is L.
Whereas L can be any number in the range 1 ≤ L ≤ K, and
it can be found by using model order selection technique [9].
Once we know L, then the signal model can be expressed as:

x =

[

IL
0(K−L)×L

]

sL+w (2)

where sL is a vector containing only the L non-zero signals.
It is important to mention that formulation in (2) assumes that
the non-zero signal samples have been ordered. It is clear by
observing signal model (2) that it resembles the well known
classical linear model. It can also be inferred from (2) that it
is a problem of rank-reduction because the number of useful
signal samples is smaller than the total number of samples.
Then for the case where we do not use spatial information,
the rank-reduced version (2) of signal model (1) can be writ-
ten as:

x = TLsL+w (3)

whereTL =
[

IL 0(K−L)×L
]T .

2.2 Signal model with spatial information
The active sensors are not only located close to the target but
also located close to each other and thus result in a spatial

cluster. Due to this neigbouring or proximity, there will exist
some correlation structure. The main focus of this paper is to
exploit this correlation structure and design a signal detector
at the fusion center based on the principle of GLRT. In order
to do so, a structure signal model is proposed on the concept
of signatures. For the case of the i-th sensor, its signature is a
vector that contains the attenuation terms to all the K sensors,
as if signal source is located at the i-th sensor position. Thus,
i-th signature is a (K×1) vector hi as follows,

hi
.
= [h(d1,i), . . . ,h(di−1,i),1,h(di+1,i), . . . ,h(dK,i)]

T . (4)

where h(di, j) = e−βdi, j , takes into account the attenuation
loss due to the distance between i-th and the j-th sensor lo-
cations. We assume herein that the fusion center has com-
plete knowledge of the positions of the sensors in the net-
work. Therefore all of the K signatures present in the matrix
H

.
= [h1,h2 . . . ,hK ] are known to the fusion center. Matrix

H is assumed as a full-rank K×K matrix with K signatures
as columns and we call it “signature matrix”. If the spatial in-
formation is available then this means that the signal s is not
completely unknown rather we know that it has some spatial
structure. This spatial structure is reflected in the signatures
matrix H, and that the signal vector s must be a linear com-
bination of these signatures as s = Ha. With such a spatial
knowledge the following signal model applies.

x = Ha+w (5)

where a is the K× 1 vector containing weights of each sig-
nature onto the received signal (i.e the virtual amplitudes of
the sensors, when they act as emitters). In other words, these
weights ai , i = 1,2, · · · · · · ,K can be understood as a kind
of virtual amplitudes that when linearly combined with the
sensors signatures, they reproduce the signal strength field
captured by the whole WSN in the presence of an emitting
source.

In practice the target appears at a random position within
the sensor field, and normally it will be surrounded by L
active sensors (i.e. the ones which receive non-zero ampli-
tudes). It means that the important signatures are those which
are related to the signals from active sensors and rest of the
K−L signatures could be ignored. Thus we are in-front of
detection problem where it is convenient to use rank-reduced
version of the signal model (5). As in section 2.1, we need
to select the L signatures of active sensors with their corre-
sponding unknownweights for the design of the detector and
for that L need to be estimated by model order selection. The
L signatures are stacked in matrixHL, which is the truncated
version ofH. Similarly the unknown weights are stacked in
aL, the reduced version of vector a.

3. GLRTWITH PROXIMITY INFORMATION
Before introducing the proposed GLRT, we present here the
test statistic based on the classical linear model, y = Bθ +v
with θ as a p×1 (i.e. p≤ K) vector of unknown parameters,
v as a vector that contains errors with PDFN (0,σ2v IK) and
B as a known K× p observation matrix. Using this model
for detecting the presence of θ %= 0(H1) against the case
θ = 0(H0) results in the test statistic as [10, Theoram 7.1,p.
274]:

LG(y) =
θ̂HBHB

(

BHB
)−1

BHBθ̂
σ2v

(6)
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where θ̂ =
(

BHB
)−1

BHy is the ML-estimate of θ . We can
further simplify (6) to get:

LG(y) =
1
σ2v

yHPBy =
1
σ2v

‖PBy‖
2 (7)

with PB = B
(

BHB
)−1

BT as the projection matrix. In sub-
sections 3.2 and 3.3 we develope test statistics for different
signal models on the basis of (7).

3.1 GLRT with Model Order Selection
The detection problem to be solved must cope with the pres-
ence of a set of unknown parameters of unknown dimension
L (i.e. unknown length). The traditional Generalized Like-
lihood Ratio Test (GLRT) will always implement the test
statistic based on the maximum order K. It is because to
implement the test statistic, it always includes observation
samples that contain only noise [8]. That is why L should
first be estimated and then GLRT is conducted based on the
estimated model L̂. Estimation of the true model order L and
GLRT can be found jointly by using multifamily likelihood
ratio test (MFLRT). MFLRT is proposed in [8] and is given
by:

TMFLRT (x) = max
1≤i≤K

f (L̄Gi(x)) ≷H1
H0

γ. (8)

where f (L̄Gi(x)) is a key transforming function used
to accommodate different signal models, with L̄Gi(x) =
2lnLGi(x) and LGi(x) as generalized likelihood ratio (GLR)
while considering i as the size of the vector of true signals.
The GLR LGi(x) is found in sections 3.2 and 3.3 by using (7)
for different signal models. In (8) γ is the threshold. Function
f (L̄Gi(x)) is given as [8]:

f (L̄Gi(x)) = [L̄Gi(x)− i(ln(Gi(x))+1)]u(Gi(x)−1)
(9)

where Gi(x) =
L̄Gi (x)
i and u(x) is the unit step function. It

is interesting to note that the MFLRT extends the GLRT to
allow testing with multiple alternative model orders.

3.2 GLR without Spatial Information
For the signal model without spatial information (3) the ex-
pression for generalized likelihood ratio (GLR), LGi(x) to be
used in (8), can be written as:

LGi(x) =
xHsorPTixsor

σ2w
=

xHi xi
σ2w

(10)

where we used the fact that

PTi = Ti
(

TH
i Ti

)−1
TH
i =

[

Ii 0i×(K−i)
0(K−i×i) 0(K−i)×(K−i)

]

.

xi is the vector containing first i samples of the sorted ob-
servation vector xsor (i.e. xsor=sort(x)). The reason for this
sorting is that MFLRT assumes ordered true signal vector s.
In practice we do not have knowledge of the ordering and
thus first s is estimated, then the magnitudes of the elements
in ŝ are sorted in descending order and after that x is ordered
according to ordered ŝ. It is also necessary to mention that
single snapshot from the sensor field is available and thus in
the absence of spatial information, ŝ is just the observation
vector x. We denote the estimated L as Lns, where subscript
“ns” is used to indicate the fact that no spatial information is
being used.

3.3 GLR with Spatial Information
In the case of spatial signal model (5), assuming model order
L= K, the GLR (7) can be written as:

LG(x) =
1
σ2w

xHPHx =
1
σ2w

‖PHx‖2 (11)

where PH = H
(

HHH
)−1

HT is the projection matrix onto
the space spanned by all of theK signatures. The correlation-
aware detector (11) matches the received measurements with
the expected correlation pattern implicitly contained within
the projection matrix onto the signatures space, PH . In the
problem under study, only the signatures related to the L ac-
tive sensors are of importance and signatures of sensors that
receive only noise should be discarded. That is why we use
reduced-rank version of signal model (5) to find GLR and
we use MFLRT to cope with issue of unknown L. To do
so we first estimate the K× 1 vector of signature weights a

as â =
(

HHH
)−1

HHx then we sort the magnitudes of ele-
ments in â in descending order. After that signatures inH are
ordered according to the sorted â. On the basis of orderedH
and ordered â, MFLRT is thus implemented. For MFLRT the
GLR, after assuming order size equal to i, can be formulated
as [10]:

LGi(x) =
1
σ2w

xHPHix =
1
σ2w

‖PHix‖
2 (12)

where PHi = Hi
(

HH
i Hi

)−1
HT
i is the reduced-rank projec-

tion matrix onto the subspace spanned by the i selected sig-
natures. Here the resulting detector matches the received
measurements with the expected correlation pattern implic-
itly contained within the projection matrix onto the subspace
of active signatures, PHi . The energy of the resulting pro-
jection is the one which is then compared to a threshold for
determining whether the expected signal structure was con-
tained on the data or not. Indeed, in the case of using no
spatial information rank-reduction (i.e. L ≤ K) with help of
MFLRT shows a significant performance improvement com-
pared to traditional (i.e. L = K) GLRT approaches [8]. The
proposed detector with the reduced-rank spatial signal model
aims further improvement in the detection performance of
the GLRT by including the spatial information in the form
of signatures. The implementation process of the proposed
detector is summarized in Algorithm 1

4. PERFORMANCE ANALYSIS
We find the performance of the proposed detector in terms of
probability of detection (PD) and probability of false alarm
(PFA). For the model order L and using properties of the pro-
jection matrix PHL , we can write the proposed detector (12)
as: [10, Ch. 13],

TL(x) =
1
σ2w

xH
(

H#
L
)H

HH
L HLH

#
Lx (13)

whereH#
L =

(

HH
L HL

)−1
HH
L is a (L×K) matrix correspond-

ing to the Moore-Penrose pseudoinverse matrix of HL. The
expression in (13) can be further rearranged by defining the
(L× 1) vector, z = H#

Lx. In this way, the detector can be
expressed as:

TL(x) =
1
σ2w

zHHH
L HLz (14)

Now z is Gaussian random vector with distribution z ∼
N

(

H#
LHa,σ2w

(

HH
L HL

)−1
)

. Let’s define µ z = H#
LHa and
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Algorithm 1 Implementation process of the proposed detec-
tor
1. The received observations from the sensor field are
stacked in vector x.

2. Using already known full signature matrix H, we define
x = Ha+w.

3. Estimate the the full virtual weights vector a as â =
(

HHH
)−1

HHx

4. Take the absolute values|â| and sort |â| in descending or-
der resulting in ã = sort (|â|)

5. Shuffle the signature vectors in H according to the sort-
ing of ã as H̃ = sort (H).

6. Implement (8) by using (12) as:
• t← 〈〉
• while i" K do
– FindHi=H̃(1 : i)
– Calculate PHi = Hi

(

HH
i Hi

)−1
HH
i

– Calculate lnLGi (x) =
x
H
PHix

σ2w
– Obtain fi = f (L̄Gi(x)) as given in (9)
– Push fi onto K×1 vector t
– i= i+1
– end while

• t = [ f1, f2, · · · , fK ]

• TMFLRT (x) = max(t) ≷H1
H0

γ as in (8) and the index
corresponding to the maximum is Lsp, the estimated
L.

Cz = σ2w
(

HH
L HL

)−1 then the statistics of the proposed de-
tector are:

TL(x) = zHC−1
z z ∼

{

χ2Lsp forH0

χ ′2
Lsp (λsp) forH1

(15)

with corresponding non-centrality parameter being given by
λsp =

(

1/σ2w
)

aHHHPHLspHa =
(

1/σ2w
)

sHPHLsp s. We
have clearly indicated the estimated order by Lsp, indicating
that rank-reduced dimension L has been estimated by per-
forming a model order selection technique onto the full es-
timate of a. Indeed, Lsp with the subindex "sp" is related to
the fact that spatial information is being exploited. With the
estimated model order Lsp the expression for the probability
of false alarm and probability of detection becomes:

PFA(Lsp) = Qχ2Lsp
(γ)

PD(Lsp) = Qχ ′2Lsp(λsp)
(γ)

(16)

One of the problems that appears in the calculation of the
performance is that it depends upon model order Lsp, which
is estimated by model order selection techniques based on
noisy input measurements. As a result, the estimated model
order becomes a random variable, which makes it very diffi-
cult to analyze the performance in close-form. This problem
is also aggravated by the fact that the distribution of this ran-
dom variable is unknown and that is why it is not so trivial
to find close-form analytical expression for the performance.
In [11], the asymptotic distribution of the model order for

Akaike’s information criterion (AIC) is obtained but the pa-
per does not demonstrate the statistical optimality for practi-
cal cases. Whereas, in the case of MFLRT there are no such
results available for the distribution of the estimated model
order. The only way to proceed is to obtain this empirically,
using histograms, which can be used to obtain the estimated
distribution of Lsp, herein referred as fLsp(l). Using fLsp(l)
the performance of (8) with (12) in term of average proba-
bility of false alarm PFA and average probability of detection
PD can be expressed as:

PFA = ELsp [PFA(Lsp)] =
Lmax
∑
l=1

PFA(l) fLsp(l)

PD = ELsp [PD(Lsp)] =
Lmax
∑
l=1

PD(l) fLsp (l)
(17)

The performance of the proposed detector is also compared
with the detector that uses no spatial information (10). The
PDF of the detector without spatial information is also chi-
square and the expression for the probability of false alarm
and probability of detection is given as:

PFA(Lns) = Qχ2Lns
(γ)

PD(Lns) = Qχ ′2Lns (λns)
(γ)

(18)

where the non-centrality parameter λns =
(

1/σ2w
)

sHLnssLns . In
the same way as explained before, the performance in term
of average probability of false alarm PFA and average proba-
bility of detection PD is:

PFA = ELns [PFA(Lns)] =
Lmax
∑
l=1

PFA(l) fLns(l)

PD = ELns [PD(Lns)] =
Lmax
∑
l=1

PD(l) fLns(l)
(19)

where fLns(l) is the empirical probability distribution of esti-
mated model order for a fixed value of signal to noise ratio.

5. SIMULATION RESULTS
In this section, we present results of computer simulations
to illustrate the performance of our proposed detector. The
performance of the proposed detector is also compared with
the detection techniques based on the signal model with no
spatial information [8]. Experiments are performed with a
total number of K = 20 sensor nodes, which are randomly
distributed in the sensor field of size 12 sq-meters. This sim-
plified scenario is depicted in Fig.1. To make the scenario re-
semble to more practical cases, we also fix the sensing range
for the sensor nodes to R = 3 meters. Looking at Fig.1, the
target is represented with the circle. The sensors that find
the event within their sensing ranges are denoted by "#" ,
while "$" indicate those sensors that receive zero amplitude
from the target. On the basis of this scenario, we analyze the
proposed detector with the help of receiver operating charac-
teristics (ROC) curves and the curves showing probability of
detection (PD) vs SNR(dB). To simulate these curves, we set
the amplitude emitted from the event as A = 3. The results
are obtained with single snapshot (N = 1). In Fig.2 as well in
Fig.3 subscript “ns” indicates the detector that uses no spatial
information and subscript “sp” represents the proposed de-
tector which uses spatial information. It can be seen in Fig.2
that the proposed detector has better ROC characteristic. In
Fig.3, the proposed detector is further analyzed with the help
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of average probability of detection (PD) plotted against dif-
ferent SNR values in dB. These plots also show that detector
with spatial information is superior to the detector which is
using no spatial information.
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Figure 1: Field scenario
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Figure 2: [ROC Curve]: Probability of detection vs proba-
bility of false alarm.

6. CONCLUSIONS
In this paper a new Generalized likelihood ratio test (GLRT)
based detector for centralized detection system has been pro-
posed. The aim is to achieve an improvement in the detec-
tion performance by exploiting correlation among neighbor-
ing sensor nodes. Prior information on basis of sensor’s po-
sitions has been incorporated through a novel signal model
based on signature matrix, which captures the correlation
among different sensors. Simulation results obtained, have
shown that the proposed detector is superior in performance
as compare to the detectors which do not use the correlation
information.
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Figure 3: PD vs SNR [dB]
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