
A REAL-TIME STEREOMATCHING ALGORITHM USING GRAPHIC HARDWARE
AND HIERARCHICAL METHOD

Sang Hwa Lee and Siddharth Sharma

Dept. of Electrical Eng., BK21 Information and Technology, Seoul National Univ., S. Korea
email: lsh529@snu.ac.kr, sidxavier1@gmail.com

ABSTRACT

This paper proposes a real-time stereo matching algorithm
implemented in the graphic hardware. The likelihood model
is parallelized and implemented using GPU programming
for real-time operation. And the prior energy model is pro-
posed to improve the accuracy of disparity estimation. First,
the likelihood matching based on rank transform is imple-
mented in GPU programming. The shared memory handling
in graphic hardware is introduced in calculating the matching
errors. Once an initial disparity map is determined based on
the likelihood model, then the disparity map is iteratively up-
dated by the prior model of disparity field. The prior model
reflects the smoothness of disparity map and is implemented
by a pixel-wise energy function. The disparity is determined
by minimizing the joint energy function which combines the
likelihood model with the prior model. These processes are
performed in the hierarchical successive approximation ap-
proach. The disparity map is interpolated using color-based
similarity. This paper evaluates the proposed approach with
theMiddlebury stereo images. According to the experiments,
the proposed method shows good estimation accuracy with
more than 30 frame/second for 640x480 images and 60 dis-
parity range. The proposed method is expected real-time
stereo camera systems to be popular in the usual PC envi-
ronments.

1. INTRODUCTION

Stereo matching is one of the most active research topics to
estimate disparity information from slightly different views.
As the interest and need of 3-D systems are recently in-
creased, the stereo camera and stereo matching become more
important. Excellent overview of the various issues involved
in stereo matching is presented by Scharstein and Szeliski
[1], and Redert [2]. The algorithms for the stereo match-
ing can be broadly classified into two categories, local and
global algorithms. The local algorithms estimate disparity
at a pixel using only image observations available in a finite
window. Many effective local algorithms for stereo match-
ing have been reported in the literature [3, 4, 5, 6, 7]. Unlike
the local algorithms, the global methods consider the corre-
lation of disparities in the neighborhood. The correlation is
usually modeled as smoothness prior function. And the joint
energy function is globally minimized to find the disparity.
These approaches are related to Markov random field (MRF)
models and energy minimization methods. The MRF model
based algorithms rely on energy minimization methods such
as graph cuts [8], belief propagation [9], nonlinear diffusion
[10, 11], and dynamic programming [12]. In those meth-
ods, the 3-D energy fields are generated using likelihood and
prior models for every disparity at each pixel, and the dis-

parity fields are estimated in the iterative process of energy
minimization.

The algorithms mentioned before concentrate on improv-
ing the accuracy in disparity estimation. The MRF model-
ing and energy minimization processes need too much com-
putational load to be implemented in real-time stereo sys-
tems. As the interest in 3-D visual systems is increased,
the real-time stereo matching is also required in many ap-
plications. This paper deals with real-time stereo match-
ing using graphic hardware and GPU programming. Some
researchers used the graphic hardware and GPU program-
ming to improve the speed [13, 14, 15]. They usually imple-
mented the likelihood matching function as SSD or SAD in
GPU programming, and optimized the disparity field using
dynamic programming. These approaches showed very fast
(near real-time) operation [18, 19, 20]. Even though their
works showed good estimation accuracy with near real-time
speed, it is not suitable for real-time applications. This paper
implements fast likelihood matching in GPU programming,
and proposes a global optimization scheme to improve the
accuracy within a small number of iterations. Memory allo-
cation problem and correlation of disparity field are proposed
for fast and accurate disparity estimation.

The rest of paper is organized as follows. Section 2 de-
scribes the likelihood matching based on the rank transform
and GPU programming. Shared memory handling technique
is also proposed. The proposed prior modeling is explained
in Section 3. The color-based interpolation and successive
estimation in the hierarchical scheme are described in Sec-
tion 4. We show the experimental results in Section 5, and
finally conclude this paper in Section 6.

2. LIKELIHOODMATCHING

2.1 Rank Transform

Likelihood matching is the basic process to find correspon-
dences. As we described in Section 1, SSD and SAD show
fast but inaccurate performances. Adaptive windows and
support weights show accurate but slow performances. This
paper exploits rank transform as the likelihood matching
function. The rank transform has shown good matching re-
sults compared with the various matching schemes [21, 22].
We implements the rank transform in GPU programming,
and propose some implementation techniques for real-time
operation. Sliding window and fast memory access are im-
plemented for the rank transform. The rank transform at a
pixel (i, j) is expressed as

r(i, j) =M− ∑
(x,y)∈W

U (I(i+ x, j+ y)− I(i, j)) , (1)
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Figure 1: Sliding window method.

whereU(·) is the unit step function, M is the number of pix-
els in the windowW . The matching is performed by the sum
of absolute differences (SAD) for rank transformed images,

SAD(di j) = ∑
(x′,y′)∈Bi j

∣

∣ rr(x
′
,y′)− rl(x

′ +di j,y
′)

∣

∣

, (2)

where Bi j is a matching window centered at (i, j), and rr(i, j)
and rl(i, j) are the rank transformed values of right and left
images respectively. In (2), di j is the disparity value on the
horizontal epipolar line.

We implement sliding window method in calculating (2).
When we consider the SAD values for the adjacent blocks
in the left image, the block locations in the left image are
shifted by one pixel in the horizontal direction as shown in
Fig. 1. Thus, the leftmost column of pixels in the block
centered at (i, j) slips out of the block, and the rightmost
column of pixels slips into the block centered at (i+1, j) to
calculate (2). When the matching block in the right image is
the same for two adjacent blocks in the left image, the whole
calculation of (2) is to subtract the SAD value of leftmost
pixels and to add the SAD value of rightmost pixels to the
previous total SAD value. We exploit this observation called
sliding window method. In this case, the order of calculating
SAD(di j) is changed. We usually calculate the SAD values of
all disparities for a block in the left image. On the other hand,
we calculate first SAD(di j) and then calculate SAD(di+1, j) of
adjacent block using the sliding window method. We should
note that the disparities di j at (i, j) and di+1, j at (i+ 1, j)
have the following relation in the sliding window method,
|di j−di+1, j| = 1.

Furthermore, if the SAD value of one-column pixels is
implemented by GPU parallel processing, the calculation of
(2) becomes much faster. This paper first aggregate the like-
lihood matching cost for each column of pixels in GPU pro-
gramming, and exploits the sliding window concept to cal-
culate the whole SAD value for each disparity. This reduces
the calculation time in the SAD aggregation which is usually
main part of time consumption.

2.2 GPU programming

For fast operation, we implement the rank transform and
SAD processes in GPU programming. The GPU implemen-
tation consists of 3 parts: 1) Data exchange between host and
GPU, 2) Rank transform computation, and 3) Block based
cost aggregation. We implement sliding window method in
cost aggregation, and exploit the sharing memory to reduce

memory overlapping. This implementation reduces the data
flow between CPU and GPU, which improves the speed.

For the first part the pinned memory is used for fast data
exchange between host and device as it efficiently uses mem-
ory cache. Rank transform is computed by separate kernels
for left and right images. Each thread of the kernel calcu-
lates rank transform on one pixel. For this each thread block
first copies the data required by its threads for rank trans-
form computation using texture cache onto its shared mem-
ory. Each thread then reads rank window pixels from low
latency shared memory to do the calculation. Using shared
memory greatly reduces the additional common or overlap-
ping data reading from the device memory.

Next, for the cost aggregation kernel, we propose a com-
putation technique which greatly improves the implementa-
tion speed and we name it as disparity sweep method. Imple-
mentation of sliding window based aggregation is not new on
GPU but we observed that the conventional GPU based slid-
ing window techniques suffer greatly from inefficient mem-
ory management. Device memory access is one of the pri-
mary bottlenecks of any data intensive application on GPU.
It was observed that the conventional implementations had
two drawbacks. One is that the image data is directly read
from the device memory for aggregation. Thus, the threads
continuously and alternatively read data from left and right
images. This temporal inconsistency forces the texture cache
to flush after each reading, which makes it ineffective. The
other drawback is on memory overlapping. To make best use
of sliding window technique, the entire image is evaluated
for each disparity one by one. This results in numerous over-
lapping memory reading for images spread across disparity
range.

To address these bottlenecks we designed a new imple-
mentation in which we combine disparity range with groups
of disp sweep (16 in our case). That is to say, for each
read data we find the required SADs for disp sweep number
of range. Basically, each block is responsible for calculat-
ing disparities of N number of rows, and thus each thread
for N pixels facilitates the sliding window approach. First
WIN SIZE number of rows from left and right images are
read one by one and stored onto the shared memory. We
read in extra data from right image as APRON with the width
equal to disp sweep. This contiguous data access pattern is
better suited for using texture reading. Since box filtering
is separable, first, threads sum and store the vertical column
SADs for disp sweep number of range in different arrays,
then each thread collaboratively uses column sums by other
threads and performs horizontal aggregation. The dispar-
ity sweep technique reduces device memory reading, which
boosts speed. A shared memory array is continuously up-
dated with current minimum SAD cost value and correspond-
ing disparity value. In order to calculate disparity for next
image row, threads flush the unwanted first row of previous
aggregation window and read in the new bottom row for the
current aggregation window into the shared memory. The
same aggregation procedure is then repeated.

3. PRIOR MODELING

This paper exploits the smoothness prior of disparity field to
improve the accuracy. Since the processing of prior model-
ing should be fast and parallelized for real-time operation,
we introduce the prior modeling as a kind of postprocess-
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Figure 2: Examples of likelihood matching. (a) reliable like-
lihood matching with large ratio between the first and sec-
ond minimum errors, (b) unreliable likelihood matching with
small ratio.

ing after finding the initial disparity map by the fast like-
lihood matching. Dynamic programming is popular for fast
prior modeling, but it suffers from some artifacts on the scan-
lines [14, 15, 16, 17]. Adaptive dynamic programming and
belief propagation do not show the real-time performance
[12, 19, 20].

The proposed prior modeling is similar to the MRF mod-
eling, and the joint energy function is defined as

E(di j) = SAD(di j)+αi j ∑
n∈N

wc(dn)
∣

∣di j−dn
∣

∣

, (3)

where SAD(di j) is the likelihood matching error of rank
transform at a pixel (i, j) and disparity di j. dn is the disparity
value in the neighborhood N, which is the first-order MRF
window with four elements. A parameter αi j is a weighting
factor of smoothness prior. When αi j is large, the disparity
map becomes smoother and the effect of likelihood match-
ing is reduced. On the other hand, the smaller values of αi j
reduce the effect of smoothness prior. In the paper, αi j is
adaptively changed with respect to the reliability of likeli-
hood matching. In the case of bad likelihood matching and
occlusion, αi j is increased so that the effect of unreliable like-
lihood matching is reduced in determining the disparity. The
reliability R(i, j) is determined by the ratio between the first
and second minimum matching error,

1

αi j
∝ R(i, j) =

SAD(d2i j)

SAD(d1i j)
, (4)

where SAD(d1i j) and SAD(d2i j) are the first and second mini-
mum matching errors, respectively. αi j is inversely varied by
R(i, j). Figure 2 shows the examples of well matched and ill
matched pixels, respectively. As we can observe, the pixels
that have large ratios between the first and second minimum
matching errors show reliable disparity estimation using the
likelihood matching.

And wc(dn) in (3) is a weight based on color informa-
tion between (i, j) and neighborhood n. Figure 3 shows the
neighborhood of prior modeling and color-based interaction.
When the color of neighboring pixel n is similar to that of
current pixel (i, j), the weight is increased so that the effect
of neighborhood with similar colors is emphasized. On the
other hand, the weight is decreased to stop the interaction of
neighborhood when the colors are different. The color-based
weight preserves the disparity discontinuity in processing the

Figure 3: The prior modeling based on color similarity.

smoothness prior modeling. From the initial disparity map
by the likelihood matching, the disparity map is recursively
updated as below,

d
(k+1)
i j =min

di j

[

SAD(di j)+αi j ∑
n∈N

wc(dn)
∣

∣

∣
di j−d

(k)
n

∣

∣

∣

]

, (5)

where d
(k)
i j is the disparity value estimated in the kth iteration.

This process makes the disparity map smoother especially
in the occlusion and textureless regions, since the likelihood
matching is unreliable and unstable.

4. HIERARCHICAL APPROACH

The processes mentioned in Section 2 and 3 are performed in
the hierarchical scheme. That is to say, the stereo images are
decomposed into the Gaussian pyramid structure and dispar-
ity map is estimated by successive refinement from the low-
est resolution to the highest one. From the lowest resolution,
the disparity is estimated by the algorithm in Section 2 and 3.
Then, the disparity map is doubled and interpolated to upper
level using color similarity. The disparity map in the lower
resolution is zero-order interpolated by the neighboring dis-
parity with the most similar color. This color-based interpo-
lation preserves the discontinuity of disparity map. The esti-
mated disparity map in the lower level is refined with small
search range. For the whole disparity range, 0 ≤ d ≤ S, and
the number of pyramid layers, L, the search range for the
lowest resolution is set as

0≤ d ≤

⌈

S

2L

⌉

, (6)

where ⌈·⌉ is the ceiling function. For the next layers, we set
the search ranges to prevent estimation errors in the lower
resolutions from propagating into the next layers. We define
search ranges with negative and positive directions, which
are not usual in stereoscopic ordering constraints,

−γ

⌈

S

2L

⌉

≤ d ≤ γ

⌈

S

2L

⌉

, (7)

where γ adjusts the search ranges. The reduced search range
improves the speed of estimation process. This hierarchical
approach improves both estimation accuracy and speed.

5. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented with graphic
hardware (Nvidia GTX-285). We evaluated the proposed al-
gorithm using the Middlebury stereo images [23]. The pa-
rameters in the proposed algorithm are summarized in Table
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Table 1: Parameters in the experiments.

Parameters Value

RT window size 7 x 7
Block aggregation size 9 x 9

number of pyramid layers 4
Gaussian filter 5 tabs, variance=1.0

γ in (7) 1.0

Table 2: Time consumption for detailed processes.

Process time (ms) fps

RT (7x7, left/right images) 1.8 313.4
SAD (9x9 block aggregation) 6.4 88.1

prior modeling 7.2 78.3
Total 15.4 36.6

1. We counted time consumption from image loading to dis-
parity map generation. The accuracy of disparity maps are
evaluated in [23], and the speed is evaluated by DES (dis-
parity estimation per second),

DES =
image size × disparity range

time consumption
. (8)

For real-time applications of VGA (640× 480) image and
60 pixels of disparity range, we need 553 MDES or 30
frames/second (fps). We restrict the number iterations in
processing the prior modeling to keep 30 fps. We evaluate
the proposed algorithms in the aspect of both accuracy and
speed. However, it is a bit difficult to compare the accuracy
since most reports of fast algorithms are focused on the oper-
ation speed. There is no enough benchmark to compare the
accuracy of fast algorithms.

First, we decompose the time consumption of proposed
method in the original resolution. Table 2 shows the time
construction of each process. The cost aggregation consumes
much time in GPU programming since it needs much cal-
culation. The prior modeling is usually processed in CPU-
based operation, thus it takes much time, too. When we
implement the proposed method in the multi-resolution ap-
proach, the time consumption for cost aggregation and prior
modeling is decreased since the image size and disparity
range are also reduced. However, we need another compu-
tation for Gaussian pyramid construction and disparity inter-
polation. We limit our final results above 30fps.

Table 3 summarizes some results of the proposed algo-
rithm and fast methods. As we expect, the algorithms for
real-time operation is not so good in accuracy. However,
the proposed algorithm is competitive with the algorithms
for real-time operation. Figure 4 shows the disparity maps
by the proposed algorithm. As we can see, the erroneous re-
gions in the disparity map become smooth, and discontinuity
is well preserved in processing the prior modeling and color-
based interpolation. The unreliable disparities of occlusion
and textureless regions are corrected by the prior modeling.
This result means that the prior modeling and color-based in-
terpolation in the hierarchical approach improve the accuracy
of disparity estimation.

According to the experiments, the proposed algorithm es-
timates the disparity map in real-time with reasonable ac-
curacy. Since there is room for further processing within
the time limitation, it is possible to improve the accuracy
in the proposed algorithm. Occlusion handling and adaptive
weights optimization should be further performed.

6. CONCLUSION

This paper has proposed a real-time stereo matching algo-
rithm using GPU programming. The proposed approach first
calculates the likelihood matching error based on rank trans-
form. The likelihood matching error is parallelized and im-
plemented in GPU programming. The adaptive memory han-
dling in graphic hardware is introduced in aggregating the
matching errors, which improves the speed. Once an initial
disparity map is determined based on the likelihood match-
ing, then the disparity map is recursively updated by the
prior model of disparity field. The prior model reflects the
smoothness of disparity field and is implemented by a pixel-
wise energy function. The disparity at each pixel is finally
determined by minimizing the joint energy function which
combines the likelihood matching error with the prior energy
model. This processing is performed in the hierarchical ap-
proach, and color-based disparity interpolation is proposed
to preserve discontinuity. According to the experiments with
Middlebury stereo images, the proposed method shows good
estimation accuracy with more than 30 frames per second for
640x480 images. The proposed method is suitable for real-
time stereo system in the usual PC environment.
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