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ABSTRACT
Robust estimators that provide accurate parameter estimates even
under the condition that classical assumptions like outlier-free ad-
ditive Gaussian measurement noise do not hold exactly are of great
practical importance in signal processing and measurement science
in general. Lots of methods for deriving robust estimators exist.
In this paper, we derive novel algorithms for robust estimation by
modeling the outliers as a sparse additive vector of unknown deter-
ministic or random parameters. By exploiting the separability of the
estimation problem and applying recently developed sparse estima-
tion techniques, algorithms that remove the effect of the outlying
observations can be developed. Monte Carlo simulations show that
the performance of the developed algorithms is practically equal
to the best possible performance given by the Crámer-Rao lower
bound (CRB) and the mean-squared error (MSE) of the oracle es-
timator [1], demonstrating the high accuracy. It is shown that the
algorithms can be implemented in a computationally efficient man-
ner. Furthermore, some interesting connections to the popular least
absolute deviation (LAD) estimator are shown.

1. INTRODUCTION AND SIGNAL MODELS

The problem of estimating the vector of p unknown parameters
θ = [ θ1 θ2 . . . θp ]

T from the sampled data

x[n] = s(n,θ)+w[n] n = 0,1, . . . ,N−1 (1)

has been extensively studied. N is the number of sampled data
and s(n,θ) can be a linear or nonlinear signal model. Usually, the
additive measurement noise w[n] is assumed to be white Gaussian
noise, or at least it is assumed that w[n] is free of outliers, i.e.,
the observations are assumed to be free of gross errors1. Then,
standard methods for deriving parameter estimators like the method
of least squares (LS) can be applied. However, if the data contains
outliers, the method of LS is known to fail completely, even if only
a single outlier is present in the data [2, p. 11]. A bunch of robust
estimators that suppress the disastrous effects of the outliers have
been derived over the years, see, e.g., [2], [3]. Among them, popular
robust estimators are the least median of squares (LMS) estimator
and the least trimmed squares (LTS) estimator. They are especially
designed to possess a high breakdown-point, i.e., they can handle
are large number up to 50 percent of outliers, the best value possible.
See [2] for a summary. Another well known method is the LAD
estimator (also called least absolute value regression or L1 regression
estimator) [4]. The idea is to impose a Laplacian distribution for
w[n] instead of a Gaussian distribution. The Laplacian distribution
is a heavy-tailed distribution and hence takes outlying observations
into account. Effectively, the impact of outlying observations is
reduced because their effect in the underlying L1-norm cost function
JLAD = ‖x−Hθ‖1is de-emphasized compared to LS. Similarly, the
seminal work of Huber [3] lead to a new class of estimators called

1In this work, we only treat outliers in x[n]. Outliers on the abscissa, so
called leverage points, are not treated.

M-estimators, which aim to minimize the impact of outliers by a
modification of the cost function that down weights large residuals.
Often, especially the LAD estimator is implemented by a variant of
the popular iteratively reweighted LS (IRLS) algorithm, see, e.g., [4]
and the recent paper [5]. It can be easily shown that the L1-norm
optimization problem min

θ
JLAD can be approximately solved by the

iterative algorithm

r̂(k) = x−Hθ̂LAD,(k)

WLAD,(k) = diag
{

1./
∣∣r̂(k)∣∣} (2)

θ̂LAD,(k+1) =
(
HTWLAD,(k)H

)−1
HTWLAD,(k)x, (3)

with an arbitrary initial estimate for θ̂LAD,(1). The subscript (k)
denotes the kth iteration, diag{·} denotes a diagonal matrix. The
diagonal elements of WLAD,(k) are calculated by the component
wise reciprocal of the estimated residuals r̂(k), denoted by 1./

∣∣r̂(k)∣∣ .
If, during the iteration, some of the residuals become zero or close
to zero, they are temporarily replaced by some small but nonzero
constant ε . The LAD estimator, while being very simple, has a rela-
tively poor statistical performance [6, p. 48]. We will later discuss
the reason therefor in detail. On the other hand, the LMS and LTS
algorithm are computationally quite demanding and their statistical
performance is also very poor. Usually, a second estimation step is
employed to improve their accuracy, like it has been done in the MM
estimation technique [6, p. 56]. In this work, we completely depart
from above techniques and derive robust estimators by modifying
the model (1). For simplicity, we limit ourselves to a linear signal
model, i.e., s(θ) =Hθ, with H ∈ RNxp. However, the algorithms
presented can be applied to nonlinear problems with straightforward
modifications. Possible outliers are taken into account by adding
an unknown sparse vector δ to (1), leading to the model (in matrix
notation)

x=Hθ+δ+w. (4)

Sparse means that the number of nonzero entries in δ ∈ RNx1 is
known to be (much) smaller than N. Furthermore, w is assumed to
be uncorrelated zero mean Gaussian noise, i.e., w ∼N

(
0,σ2I

)
.

To the best knowledge of the authors, the first who proposed such a
sparse model for taking outliers into account were Mattingley and
Boyd in the context of robust Kalman filtering [7]. For batch es-
timation, in a very recent paper Jin and Rao [8] proposed to use
such a model. In the latter paper, Bayesian maximum a posteriori
(MAP) and empirical Bayesian methods have been used to derive
robust estimators. Here, we treat the case where the elements of δ

are either purely deterministic or random variables. We will show
that the different modeling assumptions lead to different algorithms,
which have good statistical performance and are simple to be im-
plemented. Based on some of our results, we outline interesting
connections to the LAD estimator, explaining its relatively poor sta-
tistical performance. In fact, (4) seems to be a more realistic model
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for outlier-contaminated data than, e.g., the modeling assumption
that the noise is Laplacian distributed as it has been done for the LAD
estimator or the “artificial” modifications of the cost function leading
to the class of M-estimators. In practice, those data samples that
are free of outliers can usually be well modeled by a deterministic
variable plus measurement noise.

2. ROBUST ESTIMATORS AND PERFORMANCE
BOUNDS

2.1 Deterministic Model
For the deterministic version of the model (4), a conceptually straight-
forward way to obtain estimates for θ and the nuisance parameters δ

would be the application of the maximum likelihood (ML) technique,
which leads to the optimization problem

min‖x−Hθ−δ‖2
2 s.t. ‖δ‖0 ≤ α. (5)

The Euclidean norm of a vector is denoted by ‖·‖2, the semi-
norm ‖·‖0 denotes the number of nonzero entries of a vector, which is
bounded by the constant α , and the abbreviation s.t. denotes subject
to. However, above optimization problem is non-convex and NP-
hard due to the used ‖·‖0 semi-norm [1]. Hence, a computationally
efficient algorithm for solving it is unlikely to exist. A key to derive
simple estimators is to recognize the separability of the estimation
problem into a sparse and a non-sparse part, enabling the application
of a technique very similar to the principle of separable LS [9], [10].
Let z = x− δ. Then, the probability density function (PDF) of z,
p(z;θ), is an outlier-free standard Gaussian distribution. On the other
hand, for known θ and unknown δ, x−Hθ = δ+w can be viewed
as the problem of estimating a sparse deterministic vector, a problem
which has received some attention in the recent literature [11]. We
will next show different methods to exploit this.

2.1.1 Basis Pursuit Denoising

A possibility to derive a robust estimator based on the model (4)
under the assumption that δ is a purely deterministic but sparse
vector is the technique of basis pursuit denoising (BPDN) [12], [1].
Here, relaxing the ‖·‖0 semi-norm by replacing it by the L1-norm
leads to the cost function

JBP =
1
2
‖x−Hθ−δ‖2

2 +λ‖δ‖1 , (6)

analogous to the MAP approach in the Bayesian case presented
in [8]. The regularization parameter λ allows to adjust the expected
sparsity. Equation (6) is a convex cost function and thus can be
reliably numerically minimized by freely available solvers like CVX,
a package for specifying and solving convex programs [13], [14].
However, instead of using a generic solver, we can gain further
insight by deriving a very simple IRLS-like algorithm for solving (6).
Let Φ(δ) = diag{|δ|} and attempt to approximate the minimization
of (6) by the recursive minimization of

JBP,IRLS =
1
2

∥∥∥∥∥x−HθBP,(k+1)︸ ︷︷ ︸
y(k+1)

−δBP,(k+1)

∥∥∥∥∥
2

2

+

λδ
T
BP,(k+1)Φ

−1
(k)δBP,(k+1).

For notational convenience, the nonlinear dependence of Φ(k) from
δBP,(k) has been suppressed. We now exploit the already mentioned
separability of the problem and first minimize

JBP,IRLS =
1
2

(
y(k+1)−δBP,(k+1)

)T(
y(k+1)−δBP,(k+1)

)
+λδ

T
BP(k+1)Φ

−1
(k)δBP,(k+1) (7)

with respect to δBP,(k+1). This quadratic optimization problem has
the closed-form solution

δ̂BP,(k+1) =
(
I+2λΦ

−1
(k)

)−1
y(k+1), (8)

where I denotes the identity matrix of appropriate dimensions. Using
the abbreviation

A(k) =
(
I+2λΦ

−1
(k)

)−1
, (9)

back substitution of (8) in (7) yields

J
′

BP,IRLS =
1
2

(
y(k+1)−A(k)y(k+1)

)T(
y(k+1)−A(k)y(k+1)

)
+ λyT

(k+1)A(k)Φ
−1
(k)A(k)y(k+1).

Expanding above equation, grouping common terms, and some
further work results in

J
′

BP,IRLS =
1
2
yT
(k+1)y(k+1)−yT

(k+1)A(k)y(k+1)+

1
2
yT
(k+1)A(k)A(k)y(k+1)+λyT

(k+1)A(k)Φ
−1
(k)A(k)y(k+1)

=
1
2
yT
(k+1)y(k+1)−

1
2
yT
(k+1)

[
2A(k)−A(k)

(
I+2λΦ

−1
(k)

)
︸ ︷︷ ︸

A−1
(k)

A(k)

]
y(k+1)

= yT
(k+1)

(
I−A(k)

)
y(k+1) (10)

We now denote
WBP,(k) = I−A(k) (11)

and use
y(k+1) = x−HθBP,(k+1) (12)

in (10), obtaining

J
′′

BP,IRLS =
(
x−HθBP,(k+1)

)T
WBP,(k)

(
x−HθBP,(k+1)

)
(13)

with the solution

θ̂BP,(k+1) =
(
HTWBP,(k)H

)−1
HTWBP,(k)x. (14)

To summarize, the algorithm is initialized by a vector with nonzero
but otherwise arbitrary elements δ(1). Using (9), (11), and thereafter
(14), A(k), WBP,(k), and finally θ̂BP,(k+1) can be calculated. Eval-
uating (12), we obtain y(k+1), and a new iteration can be started
using (8). Typically, the iteration is terminated if

∥∥θ̂(k+1)− θ̂(k)
∥∥

2 is
smaller than a predefined threshold.

The similarity between the LAD iteration (3) and the BPDN
iteration (14) is striking. The only difference is how the individual
weighting matrices WLAD,(k−1) and WBP,(k−1) are calculated. In
fact, the cost function (13) suggests the interpretation of a weighted
LS criterion where the weighting coefficients are estimated iteratively
from the data. Shrinkage helps to improve the estimates of these
weighting coefficients, leading to improved statistical performance,
as the simulation results in Section 3 show. For the choice of λ some
rules of thumb are available in the literature [15, p. 92].
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2.1.2 Hard Thresholding

By exploiting the separability of the estimation problem, it is also
possible to derive a computationally feasible algorithm for approxi-
mately solving (5). Defining y(k) = x−Hθ(k), we first tackle the
sparse estimation problem

min
∥∥∥y(k)−δHT,(k+1)

∥∥∥2

2
s.t.

∥∥∥δHT,(k+1)

∥∥∥
0
≤ α

by hard-thresholding

δ̂HT,(k+1)[n] =
{

y(k)[n] if y(k)[n]≥ T (k)
0 else

(15)

see, e.g., [11], [15, chap. 5]. The parameter T (k) is a threshold dis-
cussed shortly. In a next step, the solution to quadratic optimization
problem minθHT,(k+1)

∥∥x− δ̂HT,(k+1)−HθHT,(k+1)
∥∥2

2 is given by

θ̂HT,(k+1) =
(
HTH

)−1
HT
(
x− δ̂HT,(k+1)

)
. (16)

Thereafter, y(k+1) = x−Hθ̂HT,(k+1) and a new iteration can be-
gin. The iteration can be initialized with an arbitrary value for
θ(1). To turn the above procedure into a working algorithm, T (k)
must be adaptively adjusted. We found the adaptive threshold
T (k) = σ̂(k)

√
2logN with

σ̂(k) = std
{
y(k)− δ̂HT,(k)

}
to work well, which is motivated by the commonly applied threshold
T = σ

√
2logN for hard-thresholding based estimation of a sparse

vector in Gaussian noise [11]. An even simpler alternative is to initial-
ize the algorithm with the results of the LAD algorithm, somewhat
similar to the idea how MM-estimators improve the performance of
a prior estimation step with low efficiency. In this case, only one
iteration (15) and (16) suffices. Simulation results in Section 3 show
the good statistical properties of above described procedure.

2.2 Random Model
Instead of treating δ in (4) as deterministic, here we discuss the
case that δ is a vector of zero-mean uncorrelated random variables
with possibly different variances δ[n] ∼N

(
0,σ2

n
)
. Furthermore,

it is known that δ is sparse, i.e., σ2
n is zero for most n. However,

we first intentionally neglect this assumed sparsity and attempt to
find an estimator for the augmented vector of unknown parameters
ξ =

[
θT σ2

0 σ2
1 . . . σ2

N−1
]T of the signal model

x=Hθ+δ+w. (17)

The PDF of δ + w is Gaussian with a diagonal covariance
matrix C depending on the unknown variances, δ + w ∼
N
(
0,diag

{[
σ2 +σ2

0 , σ2 +σ2
1 , . . . , σ2 +σ2

N−1
]T}). To derive

an ML estimator, we have to solve [10, p. 185, p. 73]

∂ log p(x;ξ)

ξi
=

1
2

tr
{
C−1(ξ)

∂C(ξ)

∂ξi

}
+

∂µ(ξ)T

∂ξi
C−1(ξ)(x−µ(ξ))

+
1
2
(x−µ(ξ))TC−1(ξ)

∂C(ξ)

∂ξi
(x−µ(ξ)) = 0

for i= 1,2, . . . , p+N, tr{·} denotes the sum of the diagonal elements
of a matrix. Here, µ denotes the mean of the signal model. After
some lengthy calculations which can not be presented due to the lack
of space, it turns out that the following nonlinear system of equations

HTWRM
(
θ̂
)
x=HTWRM

(
θ̂
)
Hθ̂ (18)

has to be solved to obtain an estimate of θ. The elements of the
diagonal matrix WRM

(
θ̂
)

are then obtained as the component wise
reciprocal of the estimated residuals r̂= x−Hθ̂ squared:

[WRM]n,n = 1/r̂[n]2 .

Note the similarity to the LAD method and to the method of BPDN
presented earlier. An iterative solution of (18) is to calculate

WRM,(k) = diag
{[

1/r̂2
(k)[0] 1/r̂2

(k)[1] . . . 1/r̂2
(k)[N−1]

]}
(19)

θ̂RM,(k+1) =
(
HTWRM,(k)H

)−1
HTWRM,(k)x. (20)

The only difference to the LAD method is that the residuals are
squared, a direct result of the Gaussian model employed here. Above
iteration suggests the interpretation of a weighted LS estimator where
the weighting coefficients (i.e., the unknown variances σ2

n ) are es-
timated iteratively from the data. However, it is obvious that the
method presented here can not be directly used. Although the deriva-
tion is based on the principle of ML, the desirable (asymptotic)
properties of ML like unbiasedness and consistency are not guaran-
teed to hold by this estimator for the following reasons. Firstly, the
number of unknown parameters is greater than the number of data
samples N, and secondly, the number of unknowns grows with the
number of samples. Both conditions are violations on the prerequi-
site assumptions that guarantee the asymptotically optimal properties
of ML estimates [10]. To correct the situation, we have to include
the additional information that δ is sparse. One possibility is to
apply hard-thresholding to the residuals in every iteration, which
would, however, necessitate to use an adaptive thresholding. A much
easier method is to use the final residuals and estimates of a prior
run of the LAD algorithm implemented through IRLS, and there-
after apply once hard-thresholding to the residuals with the threshold
T = σ

√
2logN. All values below T are set to σ . Thereafter, (19)

and (20) are applied. If σ is unknown, it can be robustly estimated
from the residuals, see, e.g., [2, pp. 202]. One application of (19)
followed by (20) suffices to achieve good statistical performance, as
simulation results in Section 3 show. This simple method produces
only a minor increase of the computational load. The fact that simple
thresholding of the residuals improves the estimator’s performance
once again highlights the fact that the relatively poor statistical per-
formance of the LAD estimator is caused by the poor estimate of the
elements of WLAD in the case of Gaussian measurement noise.

2.3 Performance Bounds
2.3.1 Deterministic Model

Usually, the statistical performance of robust estimators is measured
in terms of their (asymptotic) efficiency [6, pp. 9]. Their performance
is compared to the performance of the estimator achieving maximum
efficiency under some assumptions, often the LS estimator in the
outlier-free case. We depart slightly from this method here and adopt
the notion of the oracle estimator [1]. In our deterministic setting
(4), the oracle estimator is an estimator which “knows” the positions
of the outliers, i.e., the support supp{δ}. Then, the oracle estimator
is given by

θ̂o =
(
HT

oHo

)−1
HT

ox,

where Ho is the submatrix constructed from the rows of H corre-
sponding to the position of the samples of x that are outlier-free.
The covariance matrix of the oracle estimator is given by

Co = σ
2
(
HT

oHo

)−1
.

Of course the oracle estimator can not be implemented in practice
but we can compare the MSE of our estimators to this bound. Its
interpretation/relation to a CRB for sparse estimation problems is
further discussed in [1]. The advantage is that this bound describes
the best possible performance achievable by any unbiased estimator
for a given number of outliers.
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2.3.2 Random Model

For the random model (17) we derive the corresponding CRB, again
intentionally neglecting the sparsity of δ first. The elements of the
Fisher information matrix in our case are given by [10, p. 47]

[I(θ)]i j =
∂µ(ξ)T

∂ξi
C−1(ξ)

∂µ(ξ)

∂ξ j
+

1
2

tr
{
C−1(ξ)

∂µ(ξ)

∂ξi
C−1(ξ)

∂µ(ξ)

∂ξ j

}
,

i, j = 1,2, . . . , p+N. After some lengthy calculations, the Fisher
information matrix can be shown to be

I(θ) =

[ (
HTC−1H

)
0

0 1
2C

2

]
.

Note the block-diagonal structure of the matrix. By inverting the
Fisher information matrix, the CRB can be obtained. The best
possible covariance matrix C

θ̂θ̂
for any unbiased estimator θ̂ in the

sense of positive semidefiniteness of the matrix C
θ̂θ̂
− I−1(θ) is

given by

C
θ̂θ̂

=
(
HTC−1H

)−1
.

If outliers are present the corresponding entries in C−1 become
very small compared to the entries corresponding to outlier-free
samples. Effectively, samples which contain outliers are strongly
down weighted and hence the bound for the oracle estimator derived
in the prior subsection and above bound for the random model are
quantitatively very similar. Without taking the sparsity of δ into
account, the estimator derived in Subsection 2.2 would not achieve
this bound for reasons that have already been discussed. However,
it is interesting to see the similarity of the bounds of the oracle
estimator and the bound for the random model, against which the
performance of the estimators derived will be compared in the next
section.

3. SIMULATION RESULTS

To validate the presented algorithms and formulas, we first performed
Monte Carlo simulations with 103 trials for each signal-to-noise ra-
tio (SNR) SNR = 1/σ2 for a 2nd-order polynomial signal model
s(n,θ) = θ1 + θ2n+ θ3n2 = −0.1+ 7n+ 3n2 in the deterministic
model (4) with θ = [ θ1 θ2 θ3 ]

T. In Fig. 1, the case of no outliers
is shown. The results of all estimators except the LAD estimator
practically achieve the CRB (in terms of root mean square error
(RMSE)) or their performance is at least very near to it. Shown are,
exemplarily, the results for the 3rd polynomial coefficient, however
the results for the other parameters are comparable. The results
of the LAD estimator and the performance prediction for the LAD
estimator, see [16], are also in very good agreement. In Fig. 2 and
Fig. 3, simulation results for the deterministic model with a different
percentage of the number of outliers with respect to N are shown.
For BPDN, λ = 0.001 has been chosen. This constant choice of λ

gives good performance even over the wide range of SNRs simulated.
For an even wider range of SNRs λ should be chosen dependent on
σ2 for optimum performance. Also the results of the HT algorithm,
both the IRLS-initialized version and the version with the adaptively
chosen threshold (not shown), are in very good agreement with the
CRB. The performance loss of the LAD estimator can clearly be
seen and is in good agreement with the prediction. Also, the CRB
for the case of no outliers is shown as an indication of the increase
of the CRB due to the outliers. Results for the random model are
given in Fig. 4 for an outlier contamination of 20 percent. The
outliers have been generated according to a Gaussian distribution
with N

(
0,σ2

n = 1012) and the positions of the outliers have been
randomly varied across all samples. The CRB shown is the CRB
averaged over the individual CRBs. It can be seen that the estimator

derived is in very good agreement with the CRB, outperforming the
LAD estimator. It should also be mentioned that the determinis-
tic estimators perform very well in case of the random model and
vice versa. Finally, in Fig. 5, a simulation for constant SNR of 10
and varying percentage of outlier contamination is shown, with 103

Monte Carlo trials for every step. The outliers have been gener-
ated according to a random model with N

(
−106,σ2

n = 1012). The
nonzero mean was intentionally chosen to test the robustness of the
algorithms in such a situation. Both the HT estimator derived for the
deterministic and the estimator derived for the random model have
been applied and show nearly the same RMSE at low and moderate
percentage of outlier contamination compared to the RMSE of the
oracle estimator. The RMSE of the BDPN method is slightly higher,
but however, better than the RMSE of the LAD method. Because the
breakdown point of the HT algorithm with LAD initialization was
higher than the breakdown point with adaptive thresholding in this
simulation we concentrated on the former case. The performance
loss of the LAD method can clearly be identified. We also performed
simulations where the coefficients of the polynomial have been ran-
domly varied and also varied the SNR. For all simulations, the new
estimators performed well at low to moderate SNRs, being in good
agreement with the corresponding CRBs.
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Figure 1: Simulation results for the case of no outlier. All estimators
except the LAD are in very good agreement with the CRB.
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Figure 2: Simulation results for the deterministic model, 10 percent
outlier contamination. The performance of all estimators except the
LAD is in very good agreement with the oracle estimator bound.
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Figure 3: Simulation results for the deterministic model, 20 percent
outlier contamination. The performance of all estimators except the
LAD is in very good agreement with the oracle estimator bound.
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Figure 4: Simulation results for the random model, 20 percent outlier
contamination. The performance of the estimator derived for the
random model is in very good agreement with the CRB for the
random model.
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Figure 5: RMSE of different estimator compared to the RMSE of the
oracle estimator in case of varying percentage of outlier contamina-
tion. Except the LAD estimator, at low to moderate contamination,
the performance of the estimators is very close to the performance
of the oracle estimator.

4. CONCLUSION

We presented new algorithms for robust estimation, which exploit a
sparse model for outlying observations, together with the associated
parameter estimation performance bounds. The results of Monte
Carlo simulations indicate that the presented algorithms are in good
agreement with the presented bounds, validating both the algorithms
and the usefulness of the bounds. The presented algorithms can be
easily implemented and are computationally quite efficient. Also,
interesting differences/connections to LAD estimation are shown.
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