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ABSTRACT

This paper addresses a total transmission power mini-
mization problem in single-sink data gathering wireless sen-
sor network. We propose a distributed algorithm for solv-
ing the convex problem with partial dual decomposition ap-
proach by jointly optimizing the routing and the power al-
location. We assume orthogonal multiple access commu-
nications under Rayleigh fading. By applying dual decom-
position for relaxing the coupling constraint, the optimiza-
tion problem is decomposed vertically into two indepen-
dently solvable subproblems: the routing problem in the net-
work layer and the power allocation problem in the phys-
ical layer. Furthermore, second-level dual decompositions
are performed for distributing the solution process horizon-
tally within each layer. The master dual problem coordinates
the whole solution process by introducing the pricing on the
link capacities. Gradient projection method is employed to
update the primal and dual variables iteratively. Numerical
results are provided to show the convergence properties in
a static channel and the tracking ability under time-varying
Rayleigh channels.

1. INTRODUCTION

The correlated data gathering problem in wireless sensor
networks (WSNs) has been under extensive investigation.
An objective of data gathering WSN is to achieve energy-
efficient communications. Cristescu et al. [1] showed that by
using Slepian-Wolf (SW) distributed source coding (DSC),
the reduction in the total rates have significant influence on
the cost function of transporting the data to the sink node.
They showed a shortest path tree (SPT) to stand for the op-
timal routing for data transportation in single-sink data gath-
ering (SSDG) network. However, they ignored the influence
of wireless links on the routing by considering only distance-
dependent link weights with no interference.

It is crucial to achieve energy-efficient communications
with low-complexity infrastructure and autonomous opera-
tion of the nodes. In addition to DSC, a cross-layer design
is a key enabler to outperform the designs of conventional
intra-layer networking systems. Yuen et al. [2] proposed a
distributed algorithm to minimize the total transmission en-
ergy consumption in sensor network by using SW coding for
the rate allocation and by finding an optimal transmission
structure based on the cost functions of data transportation.
The design included congestion control due to the interfer-
ence on the links but power allocation was not included since
the capacities were considered fixed.

Xiao et al. [3] investigated simultaneous routing and re-
source allocation for wireless data networks and derived dis-
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Figure 1: A single-sink data gathering WSN.

tributed algorithm based on dual decomposition for finding
the solution for the maximum-utility problem. The work of
He et al. [4] proposed a distributed algorithm that involves
the joint optimization of the routing, the random access and
the power allocation with an objective to maximize the net-
work lifetime in WSNs. The results showed improvements
in network lifetime against the design of minimizing the to-
tal energy consumption in the network, like in [2].

Yuan et al. [5] addressed a cross-layer optimization
framework by jointly optimizing the source quantization, the
routing and the power allocation in WSN. They proposed
an algorithm to efficiently solve the problem in a modular-
ized way with an objective that introduced the trade-off be-
tween minimization of the total transmit power and the dis-
tortion incurring in the estimation process. Li et al. [6] stud-
ied joint coding/routing optimization by introducing trade-
off between the network lifetime and rate-distortion in wire-
less visual sensor networks for correlated sources.

The main contribution of this paper is to propose a dis-
tributed algorithm for total transmit power minimization in
SSDG WSNs by jointly optimizing the routing and the power
allocation with the given source rates. The joint optimization
is done combined with the SW coding of sources in order to
achieve energy-efficient data transportation for the data gath-
ering. The functionality of the proposed algorithm is studied
under static and time-varying Rayleigh channels.

2. SYSTEM MODEL

2.1 Network Topology

Consider a SSDG WSN consisting of N sensing nodes and
a sink node N + 1. The WSN can be modeled as directed
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graph G = (A,L), where set A = {1, 2, . . . , N, N + 1},
determines the set of N +1 nodes with indices i ∈ A and set
L = {1, 2, . . . , L} represents the set of L directed wireless
links between the sensor nodes with indices l ∈ L. The set of
N source nodes is defined as S = {1, 2, . . . , N}, such that
A = S ∪ {N + 1}. A SSDG WSN is illustrated in Fig. 1.

Network topology w.r.t. the interactions between the
nodes and links can be compactly described with node-link

incidence matrix A ∈ Z
(N+1)×L. An entry ail of the matrix,

associated with node i and link l, is of the following form: [3]

ail =

{

1, if node i is the start node of link l
−1, if node i is the end node of link l

0, otherwise
(1)

2.2 Multi-path Routing Model

The routing of data packets is assumed to follow a braided
multi-path routing model, that is discussed in further details
in [7]. Let fl ≥ 0 denote the amount of total flow on the
link l ∈ L, when the corresponding vector for the network
is f = [f1, f2, . . . , fL]T ∈ R

L
+. In addition, each source

node i ∈ S is associated with an external flow ri > 0, that
is the source rate of node i. The sink node is associated with
the sink rate rN+1 < 0. Thus, the rate vector for the whole
network is r = [r1, r2, . . . , rN , rN+1]

T ∈ R
N+1.

The concept of lossless data gathering in the network in-
volves, that the flow conservation law has to hold at each
node i ∈ A. The flow conservation law at each node i ∈ A
can be expressed as follows [6]

∑

l∈O(i)

fl −
∑

l∈I(i)

fl =

{

ri, if i ∈ S
−
∑

i∈S ri, if i = N + 1, (2)

where O(i) denotes the outgoing links of node i and I(i) the
incoming links. The flow conservation law introduces also a
quality of service requirement, since all the source rates has
to be delivered to the sink node, that is rN+1 = −∑i∈S ri.

The compact expression for the flow conservation law in
the whole network can be written as [3]

Af = r. (3)

2.3 Communication Model

We assume frequency division multiple access (FDMA) to
be used in the system leading to a non-interfering commu-
nications across the links. Each sensor node i ∈ S is ca-
pable of transmitting, receiving and relaying data. Sensor
nodes operate in a full-duplex mode with frequency division
duplexing. The sink node receives the data originated from
each source and has capability of performing the joint decod-
ing of data. Each sensor node i ∈ S has a fixed transmission
range dt

i. The distance between nodes i and j is denoted with
dij , i, j ∈ A, i 6= j. Thus, a wireless link from node i to j,
denoted with (i, j), exists, if dij ≤ dt

i . [6]
Each node i ∈ S can allocate different transmit powers

to its outgoing links O(i). The link capacity as a function of
transmit power pl ≥ 0 for l ∈ L with unit bandwidth and
with inverse-square path loss model is given by [3]

cl = log2

(

1 +

(

d0

dl

)2
κ2

l pl

ς2
l

)

, l = 1, 2, . . . , L, (4)

where d0 = minl∈Ldl is a reference distance, dl is the
length of link l, ς2

l is the power spectral density of ad-
ditive white Gaussian noise (AWGN) present at each re-
ceiver and κl ≥ 0 is a real-valued, time-varying and input-
independent Rayleigh distributed channel coefficient of link
l. Noise realizations Ψij , i, j ∈ A, seen in Fig. 1 are as-
sumed to be uniformly distributed across the network, such
that ς2

l = ς2, ∀l ∈ L.
Since we assume the capacity constrained communica-

tion links, the total amount of flow on each link l ∈ L has to
satisfy fl ≤ cl in order to achieve successful data transmis-
sions across link l. Each sensor node i ∈ S is limited with
the total amount of transmit power P tot

i that it can allocate to
its outgoing links, that is

∑

l∈O(i)

pl ≤ P tot
i , i = 1, 2, . . . , N . (5)

The maximum transmit powers of the nodes are expressed

with vector g = [P tot
1 , P tot

2 , . . . , P tot
N , 0]T ∈ R

N+1
+ , where

the last entry corresponds to the sink node. The total power
constraints regarding the entire network can be expressed as

Bp � g, (6)

where B = A+ ∈ Z
(N+1)×L
+ and p = [p1, p2, . . . , pL]T ∈

R
L
+ is the transmit power vector. An element (ail)+ of A+

is given by (ail)+ = max{0, ail}, thus B identifies the out-
going links of each node i [3].

3. JOINT OPTIMIZATION OF ROUTING AND
POWER ALLOCATION

The objective is to minimize the total transmit power in the
SSDG WSN while guaranteeing that all the individual but
spatially correlated data can be fully recovered at the desti-
nation. SW coding is performed for each information source
Zi, i ∈ S, to remove all the redundancy in correlated data.
The sources are considered to follow a Gaussian random pro-
cess leading to the global SW rate allocation process de-
scribed in more detail in [8].

After SW code rates are assigned to the source nodes, the
total transmit power minimization problem can be expressed
as a joint optimization over the power and flow variables as

minimize
pl,fl

∑

l∈L

pl

subject to Af = r

fl ≤ log2

(

1 +

(

d0

dl

)2
κ2

l pl

ς2

)

, ∀l ∈ L

Bp � g

fl ≥ 0, pl ≥ 0, ∀l ∈ L, (7)

where the N first entries of rate vector r belong to the SW
rate region RSW, that is given by [9]

RSW=

{

[r1, r2, . . . , rN ]T :∀K ⊆ S,
∑

i∈K

ri ≥ H(Y K|Y Kc)

}

,

(8)
where Y = [Y1, Y2, . . . , YN ]T is Gaussian distributed ran-
dom vector, K is a subset of source nodes in S and Kc de-
notes the complementary set of K.
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The optimization problem in (7) includes a capacity con-
straint for each link l ∈ L that couples optimization variables
pl and fl. The coupling constraint can be relaxed by applying
a partial dual decomposition w.r.t. the constraint. By intro-
ducing Lagrange multipliers ν = [ν1, ν2, . . . , νL]T ∈ R

L
+

for the links, the relaxed optimization problem appears as

minimize
pl,fl

∑

l∈L

[

pl + νl

(

fl − log2

(

1 +

(

d0

dl

)2
κ2

l pl

ς2

))]

subject to Af = r

Bp � g

fl ≥ 0, pl ≥ 0, ∀l ∈ L. (9)

Due to the relaxation, the optimization problem in (9) is
decomposed into two independently solvable subproblems:
routing problem in the network layer and power allocation
problem in the physical layer. Since this involves cross-layer
optimization across the protocol stack, it is referred to a verti-
cal decomposition [4]. The objective function, i.e., the partial
Lagrangian in (9) can be decomposed as

L(f , p, ν)=Lf (f , ν) + Lp(p, ν), (10)

where

Lf (f , ν) =
∑

l∈L

νlfl (11)

Lp(p, ν) =
∑

l∈L

[

pl − νllog2

(

1 +

(

d0

dl

)2
κ2

l pl

ς2

)]

.

The associated dual function is of the form

D(ν) = inf
f

Lf (f , ν) + inf
p

Lp(p, ν) (12)

with the constraint set in (9).
Let us denote the optimal flow variables with f∗ =

[f∗
1 , f∗

2 , . . . , f∗
L]T and the optimal power variables with p∗ =

[p∗1, p
∗
2, . . . , p

∗
L]T attained from finding the infimum points

for the dual function in (12). Finally, the dual problem can
be written as

maximize
ν

D
∗(ν)

subject to ν � 0, (13)

where the objective function is

D
∗(ν) = Lf (f∗, ν) + Lp(p

∗, ν). (14)

Since the primal problem in (7) is convex and Slater’s
condition is assumed to hold, the duality gap is zero [10,
p.226]. Due to the convexity of the primal problem and the
differentiability of the objective function of the dual problem,
the solution for (13) can be found by using the gradient pro-
jection method [11]. The derivative of the objective function
in (13) w.r.t. νl, l ∈ L, is

∂ D
∗(ν)

∂νl

= f∗
l − log2

(

1 +

(

d0

dl

)2
κ2

l p
∗
l

ς2

)

. (15)

Lagrange variables νl, l ∈ L, are updated at each iteration
instance t as

νl(t + 1) =

[

νl(t) + βν(t)
∂ D

∗(ν)

∂νl

(t)

]+

, (16)

where βν(t) is the step size and [m]+ denotes the projection
on to the set of non-negative numbers, [m]+ = max{0, m}.

In order to update dual variables νl, l ∈ L, in (16), the
optimal flows and powers have to be attained for a given
νl. Dual variables νl connect the subproblems to each other
by acting as coordinators for the solution process. The sub-
problems can be independently solved in the respective layer
while intercommunicating only with the dual variables be-
tween the layers.

By means of (12), the routing problem in the network
layer involves solving the following convex problem:

minimize
fl

∑

l∈L

νlfl

subject to Af = r

fl ≥ 0, ∀l ∈ L (17)

By performing a second-level dual decomposition for dis-
tributing the solution process horizontally in the layer, the
relaxed problem appears as

minimize
fl≥0

∑

l∈L

(

νlfl

)

+ λT
(

Af − r
)

, (18)

where λ = [λ1, λ2, . . . , λN , λN+1]
T ∈ R

N+1
+ are the La-

grange multipliers associated with the flow conservation law
constraint.

The dual function for minimizing the partial Lagrangian
Lf (f , ν, λ) in (18) is of the following form:

Df (ν, λ) = inf
fl

∑

l∈L

(

νlfl

)

+ λT
(

Af − r
)

(19)

After finding the optimal flow variables f∗ for (19), the as-
sociated dual problem can be expressed as

maximize
λ

D
∗
f (ν, λ)

subject to λ � 0. (20)

The dual problem in (20) can be solved with the primal-
dual algorithm, which simultaneously updates the primal and
dual variables towards the optimum points [4, 6]. The partial
derivatives of the objective function in (20) with a given ν
w.r.t. fl, l ∈ L, and λi, i ∈ A, are given as

∂Lf (f , ν, λ)

∂fl

= νl + aT
l λ (21)

∂Lf (f , ν, λ)

∂λi

= aif − ri. (22)

The variables are updated according to the gradient projec-
tion method at each iteration instance t as

fl(t + 1) =

[

fl(t) − αf (t)
(∂Lf (f , ν, λ)

∂fl

(t)
)

]+

(23)

λi(t + 1) =

[

λi(t) + αλ(t)
(∂Lf (f , ν, λ)

∂λi

(t)
)

]+

, (24)

where αf (t) and αλ(t) are the step sizes.
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According to (12), the power allocation problem in the
physical layer can be formulated as a convex problem as

minimize
pl

∑

l∈L

[

pl − νllog2

(

1 +

(

d0

dl

)2
κ2

l pl

ς2

)]

subject to Bp � g

pl ≥ 0, ∀l ∈ L. (25)

A second-level dual decomposition is applied for distributing
the solution process horizontally in the layer. By introducing

Lagrange variables ω = [ω1, ω2, . . . , ωN , ωN+1]
T ∈ R

N+1
+

w.r.t. the total power constraint of each node i, i ∈ A, the
relaxed power allocation problem can be written as:

minimize
pl≥0

∑

l∈L

[

pl − νllog2

(

1 +

(

d0

dl

)2
κ2

l pl

ς2

)]

+ ωT
(

Bp − g
)

(26)

The associated dual function is to minimize the partial
Lagrangian Lp(p, ν, ω) in (26), thus of the following form:

Dp(ν, ω) = inf
pl

∑

l∈L

[

pl − νllog2

(

1 +

(

d0

dl

)2
κ2

l pl

ς2

)]

+ ωT
(

Bp − g
)

(27)

The corresponding dual problem after attaining optimal
power variables p∗ for (27) is

maximize
ω

D
∗
p(ν, ω)

subject to ω � 0. (28)

Due to the strict convexity, the optimal powers p∗ for a given
ν can be uniquely found by means of the derivative of the
partial Lagrangian Lp(p, ν, ω) w.r.t. pl, l ∈ L, that is

p∗l = max

{

0,
νl

ln2
(

1 + b
T
l ω
) − 1

γl

}

, (29)

where γl stands for the link condition factor, that is

γl =

(

d0

dl

)2
κ2

l

ς2
. (30)

The gradient projection method can be employed to solve
the dual problem in (28). The partial derivative w.r.t. each
Lagrange multiplier ωi, i ∈ A, is expressed as

∂Lp(p
∗, ν, ω)

∂ωi

= bip
∗ − gi. (31)

Lagrange multipliers ωi, i ∈ A, are updated at each iteration
instance t as

ωi(t + 1) =

[

ωi(t) + αω(t)
(∂Lp(p

∗, ν, ω)

∂ωi

(t)
)

]+

, (32)

where αω(t) is the step size.

At the last iteration instance, the powers are recovered at
each link l ∈ L according to the capacity region in (4) as

pl =
2f∗

l − 1

γl

. (33)

The distributed algorithm for joint routing and power op-
timization is summarized in Algorithm 1. In the beginning,
the sink node has to gather the information about the sum rate
in the network. It is remarkable that the remainder of the al-
gorithm requires only local information exchange of the vari-
ables within the extreme neighborhood of each node i ∈ A.
In addition, channel state information of the outgoing links
of each node i ∈ S is required.

Algorithm 1 Joint Power and Routing Optimization

1. Initialization
a) For each node i ∈ A, choose initial λi, ωi ≥ 0

and set the total power constraint gi for i ∈ S
b) For each link l ∈ L, choose initial fl, νl ≥ 0
c) For the sink node, collect rN+1 = −∑i∈S ri

2. Distributed algorithm - At each iteration instance t:
I. The routing subproblem
a) For each node i ∈ A, collect flow variables fl

from the links connected to node i
b) For each link (i, j), i, j ∈ A, collect λi and λj

from the end nodes of the link
c) Update fl for each link l ∈ L according to (23)
d) Update λi for each node i ∈ A according to (24)

by using the updated flow variables fl, l ∈ L
II. The power allocation subproblem
a) For each node i ∈ S, collect power variables

pl of the outgoing links of node i
b) For each link l = (i, j), i, j ∈ A, collect ωi

from the start node of the link and acquire
link condition factor γl

c) For each link l ∈ L, set the optimal powers p∗l
according to (29)

d) Update ωi for each node i ∈ A according to (32)
III. The master dual problem
a) Update νl for each link l ∈ L according to (16)

3. Power recovery - At the last iteration instance
a) Recover pl for each link l ∈ L according to (33)

4. NUMERICAL RESULTS

The numerical results for the proposed algorithm were gen-
erated with networks having square grid form topology. The
source nodes were placed 100 units from each other and the
sink node was placed in the center of the network. Sources
were assigned with SW rates with a fixed correlation. The
primal optimal solutions were found in centralized manner
with CVX software [12]. The number of iterations was set to
5000 and diminishing step sizes used for gradient updates

were αf = 4.0/
√

t, αλ = 0.3/
√

t, αω = 0.3/
√

t and

βν = 0.3/
√

t. The noise variance was set to ς2 = 0.01
and the total transmit power constraint for each node i ∈ S
to g(i) = 1.0 × 103.

The convergence of the proposed algorithm w.r.t. nor-
malized duality gap (duality gap normalized w.r.t. the primal
value) is shown in Fig. 2 for one network instance in static
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Figure 2: Evolution of normalized duality gap.
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Figure 3: Tracking of the distributed algorithm.

channels for N = 16. The tracking of the algorithm un-
der time-varying channels was studied during 5000 iterations
with different normalized coherence times (normalized w.r.t.
5000 iteration instances) by averaging over 25 channel ini-
tializations for N = 8. Fig. 3a shows the normalized duality
gaps and Fig. 3b the constraint violations w.r.t. the flow con-
servation law (FCLviol) and the capacity constraint (CCviol).
It can be seen that the algorithm tracks relatively well down
to normalized coherence time of 0.0075.

5. CONCLUSIONS

We stated a total transmit power minimization problem in
a SSDG WSN and proposed a distributed algorithm which
jointly optimizes the power allocation and the routing with
the given SW coded source rates. First, the capacity con-
straint was relaxed leading to independently solvable sub-
problems, and then, second-level dual decompositions were
applied to distribute the solution process across each protocol

layer. The primal-dual method combined with the gradient
projection method was used to update the variables. Numeri-
cal results showed that the algorithm converges in the certain
network scenarios in static channels and has also the ability
to track the solution under slow fading Rayleigh channels.
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