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ABSTRACT

This paper presents a novel filtering scheme that realizes a general,
fully adaptive structure where both coefficients and required mem-
ory size are identified automatically. In particular, no distinction
between linear or nonlinear models is made, since the filter struc-
ture can evolve into either a linear or a second-order Volterra filter.
This is achieved by monitoring the mixing variables of various com-
binations where differently-sized competing filters are used. Using
a set of intuitive rules along with desired step sizes for memory
size changes, a dynamically growing/shrinking model structure is
realized. The effectiveness of the approach for a fast-converging
identification of arbitrary unknown systems is shown by means of
an acoustic echo cancellation task where realistic linear and nonli-
near systems as well as stationary and nonstationary input signals
are considered.

1. INTRODUCTION

Adaptive Filters are an essential tool in a number of digital signal
processing applications, most notably for the tasks of equalization,
prediction and system identification [1]. Although perfect linearity
is usually assumed for the sake of simplicity, many practical scenar-
ios will exhibit a certain amount of nonlinearity as well, and there-
fore would benefit from suitable nonlinear models. To this end, the
Volterra filter has received much attention since its transversal struc-
ture is rather general and adaptive realizations can straightforwardly
be obtained from corresponding algorithms in the linear case. How-
ever, a major challenge of these models is the large number of coef-
ficients to be estimated if no a priori knowledge on the model size
is available.

In this work, we extend the methodology of competing filters
as first presented in [2] and recently refined in [12], so as to pro-
vide a completely adaptive Volterra structure whose kernel sizes are
automatically adjusted to fit the underlying system. Thereby, no
distinction between linear or second-order nonlinear models has to
be made, since the continuous probing for nonlinear contributions
is inherently achieved by the employed hierarchical combination of
different components. The performance of all individual combina-
tions is then used to draw conclusions about the superior memory
configuration and adjust the actual kernels. This essentially results
in a fully adaptive filter structure where both the filter coefficient
values as well as the size dimensions of the model are estimated
and tracked throughout the whole processing.

The rest of this paper is structured as follows: A generic system
identification scenario is reviewed in Sec. 2 where the output of an
unknown system is to be replicated by an appropriate adaptive filter.
To this end, the evolutionary model structure approach is presented
in Sec. 3 and the corresponding memory control algorithm is out-
lined in Sec. 4. The effectiveness of this approach is demonstrated
for a nonlinear acoustic echo cancellation scenario with fixed and
time-varying systems as well as noise and speech data in Sec. 5,
before Sec. 6 gives some conclusions.

This work has been supported by the Deutsche Forschungsgemeinschaft
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2. GENERIC SYSTEM IDENTIFICATION SCENARIO

The task of identifying an arbitrary unknown system is depicted
in Fig. 1. Thereby, x(k) denotes the discrete-time input signal,
whereas y(k),n(k) and d(k) = y(k) + n(k) represent the system’s
output, measurement noise and obtained reference signal, respec-
tively. In order to identify the underlying parameters of the sys-

tem, the coefficient vector ĥ(k) of an adaptive model is adjusted in
parallel to this signal path, such that its output ŷ(k) minimizes the
residual error

e(k) = d(k)− ŷ(k) =
[
y(k)− ŷ(k)

]
+n(k) (1)

However, as opposed to the usual scenario and as indicated by the
dashed box, the adaptive filter structure itself is assumed to be un-
known here and is subject to an iterative refinement. In particu-

lar, this implies that ĥ(k) may either represent a purely linear im-
pulse response or comprise all coefficients of a nonlinear transversal
model.

For illustration, we restrict the consideration here to a second-
order Volterra filter (VF) [3]. The discrete-time output of such a
structure is given by the superposition

ŷ(k) = ŷ1(k)+ ŷ2(k), (2)

where ŷ1(k) =
∑N1−1

n=0
ĥ1,n(k)x(k − n) is given by linear convolu-

tion, whereas the second-order nonlinear output is computed as

ŷ2(k) =

W−1∑

w=0

N2−w−1∑

n=0

ĥ2,w,n(k)xw(k−n). (3)

Note that (3) uses the so-called diagonal-coordinate representation,
where only the regression data xw(k) := x(k)x(k−w) within a cer-

tain width W of the two-dimensional quadratic kernel ĥ2,n1 ,n2
(k) are

accounted for (see [4] for illustration). In concise notation,

x(k) :=
[
x(k), . . . ,x(k−N1 +1)

]T
, (4)

xw(k) :=
[
xw(k), . . . ,xw(k−N2 +w+1)

]T
, (5)

x(k)

n(k)

d(k)

y(k)

ŷ(k) e(k)

?

ĥ(k)

EVOLVE

Figure 1: Generic identification scenario for an unknown system by
an evolutionary adaptive filter structure (EVOLVE).
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are formed by proper stacking of the linear input and the data of
all diagonals 0 ≤ w ≤ W − 1. Likewise, the filter coefficients are
grouped as

ĥ1(k) :=
[
ĥ1,0(k), . . . , ĥ1,N1−1(k)

]T
, (6)

ĥ2,w(k) :=
[
ĥ2,w,0(k), . . . , ĥ2,w,N2−w−1(k)

]T
. (7)

Using these definitions, (2) is simplified to

ŷ(k) = ĥ
T

1 (k)x(k)+
W−1∑

w=0

ĥ
T

2,w(k)xw(k), (8)

which reveals a multiple input/single output (MISO) structure [5]
with convolutions in all “channels” having inputs x(k) and xw(k).

As can be seen from the definitions (4) – (7), the overall com-
plexity of the filtering (8) crucially depends on the size parame-
ters N1,N2 and W . Assuming that any underlying system can be
characterized by some optimum but unknown memory parameters
N1,opt,N2,opt and Wopt, it is clearly desirable to perform the identi-

fication task with an adaptive filter of nearly matched size. Other-
wise, either under- or overmodeling situations are likely to occur,
resulting in either loss of performance or wasteful use of resources
and increased gradient noise [1, 3]. In the following, we thus extend
the previous approaches [8, 12] such that time-variant estimates of
all parameters are computed concurrently to the actual adaptation
of the coefficients and used for a self-configuration of the model.

In this context, it should also be pointed out that the above
diagonal-coordinate VF comprises several special cases: First, a
purely linear filter is obtained for N2 = 0, resulting in y2(k) = 0 in
(2). On the other hand, a fully populated Cartesian-coordinate VF is
realized for W = N2, whereas W < N2 describes second-order ker-
nels with a smaller “width”, down to the power filter case (W = 1)
where only input products from the same time instant are taken into
account [6]. Hence, the VF is well-suited to dissolve the strict dis-
crimination between linear and nonlinear models and thus is highly
attractive for a more generic identification of arbitrary systems.

3. COMPETING FILTERS SCHEME

As mentioned above, the required memory sizes for the identifica-
tion of an unknown system are generally unknown as well. There-
fore, the goal of the proposed approach is to obtain reasonably close

estimates N̂1,opt, N̂2,opt of the principal kernel sizes as well as an es-

timate Ŵopt of the number of necessary (i.e. non-zero) diagonals in

the quadratic kernel. To this end, the methodology of filter combi-
nations as first presented in [7] has already been adopted to deter-
mine the optimum number of diagonals for the identification of a
second-order Volterra kernel [2]. Moreover, the estimation of the
optimum length of an adaptive FIR filter given any unknown linear
system has been proposed in [8].

In this contribution, however, we seek a joint estimation of all
size parameters of a second-order VF. Since both memory sizes
and coefficients are estimated concurrently, the resulting EVOLVE
(EVOLutionary Volterra Estimation) scheme ultimately yields a
fully adaptive filter structure and thus offers great flexibility, in-
cluding a smooth transition from linear to nonlinear models. The
proposed scheme is depicted in Fig. 2, where it can be seen that two
Volterra kernels of the same type are combined at each stage. As op-
posed to the usual step-size control application [9], all components
in the considered scheme are operated with same step sizes, but em-
ployed with different memory parameters. Using c,s ∈ {A,B} to
denote all components and subcomponents, respectively, the cor-

responding parameters N[c]
1
(k),N[s]

2
(k) and W [c](k) are realized and

updated over time.
As can be seen from Fig. 2, the total output ŷ(k) is given ac-

cording to (2). The linear kernel output is thereby given as

ŷ1(k) = η1(k) ŷ[A]
1

(k)+
[
1−η1(k)

]
ŷ[B]

1
(k), (9)

representing the combined output from both linear kernel compo-

nents ĥ
[A]
1 (k) and ĥ

[B]
1 (k), where η1(k) is a convex mixture weight.

On the other hand, the quadratic kernel is implemented by a two-
stage, hierarchical combination, resulting in a total of four different

kernel configurations with N[s]
2
(k) and W [c](k). Hence, the mixture

ŷ2(k) = η2(k) ŷ[A]
2

(k)+
[
1−η2(k)

]
ŷ[B]

2
(k), (10)

in the outer stage is given similar to the linear kernel (9), whereas

ŷ[c]
2
(k) = η [c]

2
(k) ŷ[c,A]

2
(k)+

[
1−η [c]

2
(k)

]
ŷ[c,B]

2
(k), (11)

yields the inner combinations with the respective subcomponents.

According to these individual outputs ŷ[c]
1
(k), ŷ[c]

2
(k) and ŷ[c,s]

2
(k),

various associated residual errors can be computed as well. Modi-
fying (1), these are defined by

e[c]
1
(k) = d(k)−

[
ŷ[c]

1
(k)+ ŷ2(k)

]
, (12)

e[c]
2
(k) = d(k)−

[
ŷ1(k)+ ŷ[c]

2
(k)

]
, (13)

e[c,s]
2

(k) = d(k)−
[

ŷ1(k)+ ŷ[c,s]
2

(k)
]
, (14)

and thus are always based on the individual kernel of the same type
and the combined kernel of different type. Note that this can easily
be extended to higher-orders as outlined in [9]. Using (12) – (14),
NLMS-type coefficient updates are finally given by

ĥ
[c]
1 (k+1) = ĥ

[c]
1 (k)+

α1

P[c]
1
(k)+δ

e[c]
1
(k)x[c](k), (15)

ĥ
[c,s]
2,w (k+1) = ĥ

[c,s]
2,w (k)+

α2

P[c,s]
2

(k)+δ
e[c,s]

2
(k)x[c,s]

w (k), (16)

and hence performed separately for each linear kernel and second-
order diagonal. Although α1 and α2 denote kernel-dependent but

fixed step-size parameters (δ is a small regularization constant), a
normalization to the short-time kernel energies is given by

P[c]
1
(k) =

N [c]
1
(k)−1∑

n=0

x2(k−n), (17)

P[c,s]
2

(k) =

W [c](k)−1∑

w=0

N [s]
2
(k)−w−1∑

n=0

x2
w(k−n). (18)

It should moreover be emphasized that the corresponding vectors
(4) – (7) are also based on the current values for the kernel sizes

N[c]
1
(k),N[s]

2
(k) and numbers of diagonals W [c](k).

For simplicity and robustness, the actual weighting involved in
the combinations (9) – (11) performs a convex mixing such that

0 < η1(k),η2(k),η
[c]
2
(k)< 1 ∀ k (19)

holds. This is ensured by defining the mixing via a sigmoid, such
that

η [c]
2
(k) =

[
1+e−a[c]

2
(k)

]−1
(20)

where a[c]
2
(k) denotes a time-variant control parameter that is

adapted at each time step so as to minimize the resulting squared
error after combination [10]. For robustness, normalized updates

a[c]
2
(k+1) = a[c]

2
(k)+µa

η [c]
2
(k)

[
1−η [c]

2
(k)

]

P[c]
∆,2

(k)
e[c]

2
(k)∆e[c]

2
(k) (21)
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ŷ[A]
1

(k)
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ĥ
[A,A]

2 (k)

ĥ
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Figure 2: Adaptive filter structure based on the EVOLVE scheme with evolutionary linear and second-order nonlinear contributions
(LC1/LC2 = length control, WC = width control). Competing Volterra kernels of different size are employed in order to obtain estimates

N̂1,opt, N̂2,opt, Ŵopt of the unknown optimum memory parameters.

with a common fixed step size µa are implemented for all combina-
tions in Fig. 2. These updates are obviously driven by the “input”

∆e[c]
2
(k) := e[c,B]

2
(k)−e[c,A]

2
(k), (22)

representing the error difference between the (sub-)components and
are normalized by the smoothed power [11]

P[c]
∆,2

(k) := 0.9P[c]
∆,2

(k−1)+0.1
[
∆e[c]

2
(k)

]2
. (23)

Note that η1(k) and η2(k) and their updates are defined analogously

and that the range of all controls a1(k),a2(k) and a[c]
2
(k) is typically

limited to some interval [−amax,+amax] [10].

As analyzed in detail in [10], the effect of the combination is
as follows: The mixing variables (19) are continuously adjusted in
order to obtain the best possible performance based on its given

(sub-)components A or B. For instance, η [A]
2

(k) → 1 whenever

ĥ
[A,A]
2,w (k) is a better model for the corresponding part of the true

system than ĥ
[A,B]
2,w (k). In that sense, the value of each mixing vari-

able can also be interpreted as a soft switch, deciding for the cur-
rently superior of two competing models that also produces a lower
mean squared error.

4. MEMORY EVOLUTION ALGORITHM

In the following, the above-mentioned soft decision property is now
exploited in order to control the used memory of the complete adap-
tive filter. Due to a continuous monitoring of the achieved filter per-
formance, an estimate of the optimum memory parameters can then
be obtained over time. As graphically indicated in Fig. 2 all existing

kernels are realized with different sizes. In more detail,

N[B]
1

(k) = N[A]
1

(k)+N1,dist, (24)

N[B]
2

(k) = N[A]
2

(k)+N2,dist, (25)

W [B](k) =W [A](k)+Wdist , (26)

such that the (sub-)components B are always larger. Although
the effective size parameters are implemented time-variantly,
N1,dist,N2,dist and Wdist denote fixed “distances” between the com-

peting models that are kept throughout the whole processing.
In order to reliably assess the general trend of the filter perfor-

mance, only long-term observations are to be taken into account [2].
Therefore, smoothed versions of all mixing variables, namely

η̃1(k) = λ η̃1(k−1)+ [1−λ ] η1(k), (27)

η̃ [c]
2
(k) = λ η̃ [c]

2
(k−1)+ [1−λ ] η [c]

2
(k), (28)

are computed for the length control units (LC1 and LC2) of both
kernels. Likewise,

η̃2(k) = λ η̃2(k−1)+ [1−λ ] η2(k) (29)

provides a lowpass-filtered version of η2(k) for the width control
unit (WC) of quadratic kernel. For simplicity, the same forgetting
factor is chosen for all decision variables and has to be chosen very
close to one, i.e., λ = 0.9995 is used for all results in Sec. 5.

The actual changes in kernel memory are performed, according
to a set of intuitive rules as follows. First, the length of both linear
kernels c ∈ {A,B} are adjusted by

N[c]
1
(k+1) :=






N[c]
1
(k)−∆N1, if 1− ε−

LC1
≤ η̃1(k)

N[c]
1
(k)+∆N1, if η̃1(k)≤ ε+

LC1

N[c]
1
(k), otherwise

, (30)

1266



where ∆N1 denotes an (integer) size increment and ε+/−
LC1

are spe-

cified thresholds for the length increase/decrease. In a similar way,
the two-stage control of the quadratic kernel size is realized. The

principal length affecting all diagonals ĥ
[c,s]
2,w (k) in the second-order

kernels is thus changed according to

N[s]
2
(k+1) :=






N[s]
2
(k)−∆N2, if

1− ε−
LC2

≤ η̃ [A]
2

(k)

∧ 1− ε−
LC2

≤ η̃ [B]
2

(k)

N[s]
2
(k)+∆N2, if

η̃ [A]
2

(k)≤ ε+
LC2

∧ η̃ [B]
2

(k)≤ ε+
LC2

N[s]
2
(k), otherwise

.

(31)
Here, ∆N2 again denotes the size increment and ε+/−

LC2
are thresholds

that can be specified to obtain a desired adaptation sensitivity (see
Sec. 5 for typical values). However, as can be seen from (31), the
size will only be changed in case of coherent indications of both

mixing variables η̃ [c]
2
(k), as otherwise contradicting situations may

occur. In the outer combination, the number of diagonals in the
second-order kernel is again adapted similarly to (30), i.e.,

W [c](k+1) :=





W [c](k)−∆W, if 1− ε−
WC

≤ η̃(k)

W [c](k)+∆W, if η̃(k)≤ ε+
WC

W [c](k), otherwise

. (32)

As before, the increase/decrease in diagonal width is defined using

thresholds ε+/−
WC

and increments ∆W . Unlike the length increments

∆N1,∆N2, it is, however, reasonable to change the number of diag-
onals only in very small steps such that ∆W = 1 is a typical choice.

Since any change event enforces a readaptation phase, none of
the above rules (30) – (32) are applied for a certain settling time.
The latter is given by the average number of coefficients in the af-
fected kernel type scaled by a factor τp, i.e.,

K(k) := τp Cp,avg(k), (33)

where, depending on the kernel type associated to the changes,

Cp,avg(k) :=





1
2

∑
c∈{A,B}

N[c]
1
(k) , if p = 1

1
4

∑
c,s∈{A,B}

W [c](k)∑
w=0

N[s]
2
(k)−w, if p = 2

. (34)

To ensure a proper adaptation of the total filter structure, moreover,
a precedence of (30) over (31) and (32) is enforced, since the linear
kernel is generally the largest and most important.

Throughout the whole operation, desired estimates of the op-
timum memory sizes are then obtained by always regarding the
smaller components which is briefly illustrated in the sequel: Start-
ing from an undermodeling situation with small initial sizes, the
larger B components will always be preferred as they provide an in-
creased modeling power, thus triggering increasing lengths and/or
widths. On the other hand, if the used size parameters of both adap-
tive filter components exceed the corresponding memory of the un-
known system, the respective decision variable will tend towards
zero, since the smaller component A still produces less gradient
noise. In turn, this yields a decrease of the associated memory pa-
rameter. Accordingly, for p = 1,2

N̂p,opt(k) := N[A]
p (k) as well as Ŵopt(k) :=W [A](k). (35)

Hence, the proposed EVOLVE approach allows for an identification
of optimum filter sizes that can also be tracked continuously.

In addition to the straightforward implementation, inevitably
requiring the parallel operation of several full linear and quadratic
kernels, a much more efficient version can be outlined. The latter
relies on a virtualization of filter components by exploiting the very

close behavior of the first N[A]
p (k) coefficients (W [A](k) diagonals)

of all components and results in a significantly reduced complexity.
For a detailed description we refer to the illustrations in [2, 12].
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Figure 3: Evolution of kernel size estimates for white Gaussian
noise input and various settling time factors τ1 and τ2 = 20.

5. SIMULATION RESULTS

In order to show the effectiveness of the presented scheme in its effi-
cient implementation [2, 12] under challenging conditions, Fig. 1 is
interpreted as a nonlinear acoustic echo cancellation (NLAEC) sce-
nario [6] at 8 kHz sampling rate. The microphone signal is thereby
composed such that a signal-to-noise ratio of 30 dB as well as a
10 dB ratio of linear to nonlinear signal components is obtained.
For the NLMS-type adaptation of all filter components, parameters

α
1/2

= 0.1/0.05 and δ = 10−4 are used along with a simple ker-

nel step-size control that compensates for the different speeds of
convergence of different orders [12]. Moreover, the combination
mixing is updated by µa = 0.3 in all experiments. In order to rep-
resent the typical use case, the initial mixing values are defined by

a1(0) = a2(0) = a[c]
2
(0) ≡ −4, whereas all memory sizes are kept

quite small and adjusted by ∆N1 = 20,∆N2 = 5 and ∆W = 1. Note
that all results are averaged over 10 independent noise realizations
such that non-integer parameter values may occur as well.

In a first experiment the temporal evolution of all optimum

size estimates N̂1,opt, N̂2,opt and Ŵopt is demonstrated for a second-

order nonlinear system with white Gaussian noise input. The VF is
thereby defined by N1,opt = 480, N2,opt = 60 and Wopt = 15 whereas

the competing kernels are initialized such that distances N1,dist = 40,

N2,dist = 10 and Wdist = 2 are used for probing increases in memory

size. For the change decisions, ε∗∗ = 0.1 is chosen for all threshold
parameters (i.e. ∗ denotes any option). As can be seen from the re-
sults in Fig. 3, all kernel sizes are reliably estimated given sufficient
convergence time. The influence of the settling time is thereby illus-
trated for various factors τ1 whereas τ2 = 20. Although this mainly

1267



N̂
1
,o

p
t(

k
)

time [s]

N̂
2
,o

p
t(

k
)

an
d

Ŵ
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Figure 4: Estimates for two different “distance” settings and non-
stationary input signal (male speech).

affects the speed of convergence of N̂1,opt(k), the corresponding es-

timates of the quadratic kernel differ as well, revealing the highly
dynamic adaptive structure with ongoing memory reconfiguration.

Regarding nonstationary excitation signals, Fig. 4 shows sim-
ilar results for a male speech input to a VF of size N1,opt = 300,

N2,opt = 50 and Wopt = 25 as indicated in the plots. Note that both

second-order kernel parameters have been combined in the lower
plot to save space. Here, threshold parameters ε∗∗ = 0.05 and con-
trols τ

1/2
= 10 are used in combination with two different size dis-

tance sets as given in the legend box of Fig. 4. As can clearly be
seen from the obtained estimates, employing larger size differences
generally improves the decision mechanism of the combination and,
hence, the true optimum values are found more quickly and ro-
bustly. Nevertheless, this improvement comes at the expense of an
increased steady-state complexity (see [12] for more information).

Finally, the principal tracking capability of the EVOLVE
scheme is briefly demonstrated by the results in Fig. 5. Again, a
second-order VF is employed with white Gaussian noise input and
τ

1/2
= 0.10 as before. In the beginning the true system from Fig. 3

is used, i.e., N1,opt = 480, N2,opt = 60 and Wopt = 15. However, af-

ter 60 and 120 seconds, the number of active diagonals is reduced
to Wopt = 3 whereas N2,opt is kept before the quadratic kernel size is

also truncated to N2,opt = 3. Note that the latter two stages therefore

approximate the situations of a power filter [6] or an almost linear
system (with N1,opt = 300 after 120 seconds). This shows the great

flexibility of the approach, where all memory modifications can be
followed well for the given threshold parameters ε∗∗ — despite con-
tinuous adaptation of the incorporated filter coefficients.

6. CONCLUSIONS

We have presented a comprehensive adaptive filtering scheme
where not only the coefficients but also the structure of the underly-
ing system is continuously adjusted. This evolutionary behavior is
realized by observing various competing filter kernels of different
size and evaluating the performance of their convex combination
weights. According to a set of intuitive rules and defined size in-
crement, the filter structure is dynamically reconfigured and allows
for growing/shrinking memory. In addition, the strict discrimina-
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Figure 5: Tracking property of the EVOLVE scheme with white
noise input and various changes (after 60 and 120 seconds).

tion between linear and nonlinear models is overcome. Based on a
nonlinear acoustic echo cancellation scenario using a second-order
Volterra filter, the effectiveness of the approach has been demon-
strated for both noise and speech signals and time-variant systems.
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