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ABSTRACT

The deployment of relay nodes is a viable solution to fulfil
the demands of high throughput and ubiquitous access for
future mobile radio communications. A relay can cooperate
by transmitting either a repetition of the previously trans-
mitted signal (repetition coding) or by sending new code bits
which have not been transmitted before (incremental redun-
dancy). In this paper, a general optimization method for
the achievable code rates in an adaptive relay network with
repetition coding and incremental redundancy is presented.

1. INTRODUCTION

In relay networks different forwarding techniques at the relay
such as amplify-and-forward (AF) and decode-and-forward
(DF) have been investigated [1]. Adaptive relaying was in-
troduced in [2]. This adaptivity takes the advantages of AF
and DF and minimizes their disadvantages. Relay networks
with such adaptivity are named adaptive relay networks.
There are two methods by which a relay can cooperate,
namely repetition coding (RC) and incremental redundancy
(IR) [3]. In repetition coding the relays (or source) retrans-
mit repetitions of the source’s first transmission. The desti-
nation can combine all the repetitions using maximum ratio
combining (MRC).
In the case of incremental redundancy (IR), the relays (or
the source) transmit additional parity bits which have not
been transmitted before. The number of code bits transmit-
ted from each relay may be different. The destination merges
these bits (code combining) and tries to decode the resulting
code.
For IR the relay must1 successfully decode the received bits
from the source, otherwise it cannot generate incremen-
tal redundancy. However, in the case of repetition coding
this is not an issue. The relay can repeat the signal (e.g.
amplify-and-forward) without successfully decoding it, more-
over, repetition coding is simpler to implement in practice.
However, the problem with repetition coding (RC) is that
for the sake of MRC the relay (or source) repeats the whole
codeword. Contrarily, in the case of IR a relay can trans-
mit theoretically even a single bit to the destination. The
objective of this paper is to optimize and compare the per-
formances of repetition coding and incremental redundancy
in an adaptive relay network with specific setup.
In [4,5], a comparison of IR and RC for relay networks is per-
formed. Reference [4] uses decode-and-forward with space
time transmissions from the relays (the performance is iden-
tical to beamforming). In that contribution the authors acti-
vated all successfully decoding relays. As distributed beam-
forming is difficult to implement in practice, in this work we
consider orthogonal multiple access. In orthogonal multiple
access the activation of all relays is not optimal, hence, re-
lay(s) are selected for contribution. Moreover, we consider
adaptive relaying instead of pure decode-and-forward. In [5],

1Soft reencoding methods exist but are not considered here.

only a single relay with decode-and-forward is considered.
In [6] bits are assigned randomly to each transmission, in
our simulation results we compare our optimization to the
random assignment as done in [6] but with equal probability
of assignment. Our new contributions are summarised as
- determining optimal rates for IR and RC.
- considering an adaptive multi-relay network with orthogo-
nal access.
- In the case of IR, the lengths of sequences transmitted from
the source and each of the relays may not be the same.
The rest of the paper is organized as follows. Sec. 2 presents
the system model and Sec. 3 introduces resource allocation
based on marginal returns. Sec. 4 optimizes the rates and
number of transmissions for incremental redundancy and
repetition coding. Finally, Sec. 5 discusses the simulation
results, while, Sec. 6 concludes the paper.

2. RELAY NETWORK

First, the general channel model of the relay network is intro-
duced. Second and third subsections explain relaying with
incremental redundancy and with repetition coding.

2.1 System Model

The system model in Fig. 1 is restricted to a parallel dual-
hop network. The source S encodes its K bits data sequence
u using an ideal code. The modulation results in the se-
quence xs of Ms symbols. For an ideal coding scheme [7],
whenever, the accumulated mutual information Ms · C(γ)
at a receiver (relay or destination) is greater than or equal
to the info length K, then we have successful decoding at
that receiver. Here, C(γ) is the M-ary AWGN channel ca-
pacity with γ being the SNR from the source to the receiver.
We assume a general M-ary modulation scheme which maps
m = log2(M) bits to one of the possible M symbols. For the
sake of the optimization procedure provided in this paper,
we restrain only to the modulation schemes whose capacity
is increasing concave function of the channel SNR. Moreover,
it is assumed that each node uses the same M-ary modula-
tion and transmits with a constant power equal to 1. The
source-relay, source-destination, and relay-destination links
are assumed to be i.i.d. Rayleigh block-fading including path
loss. The path loss exponent is 2 and complex AWGN has
variance N0. Next, the channel model with respect to IR
and RC is provided.

2.2 Relaying with Incremental Redundancy

In the case of relaying with incremental redundancy (IR),
the source first encodes the signal u using an ideal coding
scheme, resulting in the code word xM as shown in Fig. 2.
Afterwards, the application of puncturing and modulation
results in the symbol sequence xs with length Ms and code
rate Rs = K/(Ms) bits/symbol. The block PS performs
puncturing at the source. In this scheme, the lth relay tries
to decode the received signal yrl

. In the case of success, the
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Figure 1: System model
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Figure 2: Block diagram depicting the procedure of incre-
mental redundancy for a single relay.

relay also uses an ideal code with puncturing (unit PR) and
generates the M-ary symbol sequence xrl

. Otherwise, the
relay remains silent, i.e.,

xrl
=



x̄M for Ms · C(γrls) ≥ K

0 for Ms · C(γrls) < K
. (1)

In (1), x̄M represents symbols sequence obtained by modu-
lating the new additional parity bits from the mother code
word xM with length Mrl

and code rate Rrl
= K/(Mrl

).
Every relay transmits different bits of the word xM . Here,
γrls is the SNR on the link between source and lth relay.
The mutual information (per Ms symbols) delivered by
the source at the lth relay and at the destination is given
by Ms · C(γrls) and Ms · C(γds) respectively. Let R =
{1, 2, 3..., L} be the set of indices of all relays. The mutual
information delivered at the destination by the lth relay is
given by Mrl

· C(γdrl
), where, l ∈ D and D ⊂ R is the set of

indices of relays with successful decoding. γdrl
and γds rep-

resent the SNRs from the source and from the lth relay to
the destination respectively. Consequently, the mutual infor-
mation of all received channel symbols after code combining
(CG) at the destination is given by

Itot = Ms · C(γds) +
X

l∈D

Mrl
· C(γdrl

). (2)

2.3 Relaying with Repetition Coding

In this scheme, forward error correction in conjunction with
repetition coding is applied as shown in Fig. 3. The source
applies an ideal coding scheme (as forward error correction
code) with code rate Rs to the sequence u. This encod-
ing and M-ary modulation results in the code word xs with
length Ms. Afterwards, the unit REP stores the signal and
repeats it on request. The number of total transmissions
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Figure 3: Block diagram depicting the procedure of repeti-
tion coding for a single relay.

from the source are denoted by Ns.
Each relay receives Ns transmissions from the source and
combines the received signals using maximum ratio combin-
ing. The SNR of the source-relay link is denoted by γrls.
Thus, the SNR of the signal after maximum ratio combining
at the lth relay is Ns · γrls. Subsequently, the relaying tech-
nique ADF [8] is applied. In this technique the relay tries to
decode the signal obtained after maximum ratio combining.
In the case of decoding success, the signal xs is generated and
transmitted from the relay. Otherwise, amplify-and-forward
is used. Thus, the transmitted signal is given by

xrl
=



xs for Ms · C(Ns · γrls) ≥ K

α · yrl
for Ms · C(Ns · γrls) < K

. (3)

Here, the inequality Ms · C(Ns · γrls) ≥ K represents the
condition for successful decoding for an ideal code and α is
the amplification factor at the relay. The number of retrans-
missions of the signal xrl

from the lth relay is denoted by
Nrl

.
The destination receives Ns repetitions from the source and
Nrl

(each of length Ms symbols) repetitions from the lth re-
lay. These signals are combined using maximum ratio com-
bining. The SNR from all the nodes at the destination after
maximum ratio combining becomes

γADF = Ns · γds +
X

l∈D

γADF
l,Nrl

+
X

l∈R\D

γADF
l,Nrl

. (4)

Here, γADF
l,Nrl

= Nrl
·γdrl

for l ∈ D is the SNR via lth relay us-

ing decode-and-forward and γADF
l,Nrl

=
Ns·γrls·Nrl

·γdrl

Ns·γrls+Nrl
·γdrl

+1
for

l ∈ R\D is the SNR via lth relay using amplify-and-forward
as derived in [9].
The next section explains the marginal returns based re-
source allocation technique. Later on, this technique will
be used to find the optimum rates for different nodes.

3. RESOURCE ALLOCATION WITH
MARGINAL RETURNS

In this section a resource allocation technique based on di-
minishing Marginal Returns (MR) [9] is described. Let, vl

represents the number of resources assigned to the lth relay.
Moreover, f(v1, ...vl, ...vL) : Z

L
+ → R+ denotes a monotoni-

cally increasing objective function with diminishing marginal
returns w.r.t vl. The Marginal return (MR) ∆l,vl

w.r.t. vl is
the gain of the objective function per unit increase of vl i.e.,
∆l,vl

:= f(v1, ...vl + 1, ...vL) − f(v1, ...vl, ...vL). Diminishing
means that ∆l,vl

is decreasing (or remains constant) w.r.t.
vl i.e., ∆l,vl

≥ ∆l,vl+1.

790



To clarify the concept of MR, a small toy example with the
corresponding solution is presented. Imagine an objective
function shall achieve the value f(v1, ..vl, ..vL) = fth at the

minimum cost
PL

l=1 vl.
According to [9], the solution can be obtained by initializ-
ing vl ∀l with the minimum possible values (0 in this case).
Afterwards, v1 or v2 or ... vL are incremented (repeat-
edly) depending on which vl provides the maximum MR.
The optimal solution is reached, when f(v1, ..vl, ..vL) ≥ fth

is achieved. At this point, the optimization stops with
{v∗

1 , ...v∗
l , ...v∗

L} = {v1, ...vl, ...vL} being the solution.
As an example, let, f(v1, v2) = log(1 + v1) + 0.8 · log(1 + v2)
and fth = 1.5 holds. v1 and v2 are initialized with the min-
imum possible values (v1 = v2 = 0). At [v1, v2] = [0, 0], v1

and v2 give marginal returns 0.693 and 0.554 respectively. As
0.693 > 0.554, v1 is incremented and we get [v1, v2] = [1, 0].
At [v1, v2] = [1, 0], v1 and v2 give marginal returns 0.4055
and 0.554 respectively. As 0.554 > 0.405, v2 is incremented
and we get [v1, v2] = [1, 1]. Afterwards, we get marginal
returns of 0.4055 and 0.3244 for v1 = 1 and v2 = 1 respec-
tively. Here, 0.4055 > 0.3244, which leads to the increment
of v1 and [v1, v2] = [2, 1] is obtained. These values deliver
f(2, 1) = 1.65, which is greater than fth = 1.5. Therefore,
the optimization stops and [v∗

1 , v∗
2 ] = [2, 1] is the solution.

4. RATE OPTIMIZATION FOR IR AND RC

In this section the selection of the optimal code rates Rs and
Rrl

∀l for relaying with IR are presented. Furthermore, the
optimization of the code rate Rs and the number of retrans-
missions Nrl

∀l with RC is also provided. This optimization
requires global channel knowledge at a central node.

4.1 Rate Optimization for Incremental Redundancy

Optimizing the code rate means that the minimum number
of possible symbols (Ms +

P

l∈D Mrl
) should be selected to

ensure successful decoding at the destination. Mathemati-
cally, this can be stated as

[M∗ M∗
s ] = argmin

[M,Ms]

" 

Ms +
X

l∈D

Mrl

!#

(5)

such that,

Ms · C(γds) +
X

l∈D

Mrl
· C(γdrl

) ≥ K, (6)

where, M = [Mr1
, ...., MrL

] holds. Moreover, we have to find
the optimum value of Ms. However, whenever Ms changes
then a relay may switch from being active to passive and
vice-versa. This process introduces a further non-linearity
in the system making the optimization difficult. Therefore,
we choose Ms such that all possible number of relays have
successfully decoded as given below.

for l̂ = {0, 1, 2, 3, ...., L}

[M̄l̂ M̄s
l̂
] = argmin

[M,Ms]

" 

Ms +
X

l∈D

Mrl

!#

(7)

such that,

Ms · C(γds) +
X

l∈D

Mrl
· C(γdrl

) ≥ K, (8)

Ms ≥
K

C(γr
l̂
s)

. (9)

end loop

[M∗ M∗
s ] = argmin

[M̄
l̂
,M̄s

l̂
]

ˆ

M̄s
l̂
+
`

M̄l̂ · [1]L×1

´˜

In this problem, l̂ corresponds to the number of relays with
successful decoding and thus using decode-and-forward. We
assume that the relays are ordered in descending order w.r.t.

γrls. Thus, l̂ = ||D|| also represents the index of a relay with
the weakest link to the source among the relays with suc-

cessful decoding i.e, l̂ = argmin(γrls), l ∈ D holds. There-

fore, inequality (9) ensures that all l̂ relays with indices

in the set D decode successfully. Moreover, l̂ = 0 corre-
sponds to the case when no relay successfully decodes and
let K/C(γr0s) = K/m holds.
The marginal return per symbol w.r.t. Ms and Mrl

is given
by ∆Ms

= C(γds) and ∆Mrl
= C(γdrl

) respectively. It is
clear that ∆Ms

and ∆Mrl
∀l are constants and do not change

w.r.t. Ms and Mrl
respectively, therefore, we can apply the

marginal return based solution to solve problem (7) for a

specific value of l̂ as shown in Algorithm 1. As the marginal

Algorithm 1

for l̂ = {0, 1, 2, ..., L}

1: Initialization: Ms = K
C(γr

l̂
s)

, Mrl
= 0 ∀l

2: Calculate ∆Ms
= C(γds) and ∆Mrl

= C(γdrl
)

3: l∗ = argmax
l∈D

(∆Mrl
)

4: if ∆Ms
< ∆Mr

l∗
then

5: Mrl∗
= K−Ms·C(γds)

C(γdr
l∗

)

6: else
7: Ms = K

C(γds)

8: end if
9: M̄l̂ = [Mr1

, Mr2
, ......, MrL

], M̄s
l̂
= Ms

end for
[M∗ M∗

s ] = argmin
[M̄

l̂
,M̄s

l̂
]

ˆ

M̄s
l̂
+
`

M̄l̂ · [1]L×1

´˜

return ∆Mrl
∀l ∈ D is constant, the selection of a single relay

Rl∗ among the relays with successful decoding is optimal.
In this algorithm, if ∆Ms

< ∆Mr
l∗

holds then we continu-

ously increment Mrl∗
, which leads directly to the equality

given at line 5. Otherwise, Ms is progressively incremented
which results in Ms = K

C(γds)
. Thus, the optimal rates are

R∗
s = K/M∗

s and R∗
rl

= K/M∗
rl
∀l bits/symbol.

4.2 Rate Optimization for Repetition Coding

The goal is to minimize the total number of code bits trans-
mitted under the condition of successful decoding at the des-
tination. Let, the vector N = [Nr1

, Nr2
, ...., NrL

] represents
the number of transmissions from all the relays and for the
sake of simplicity Ns = 1 is assumed. Similar to the argu-
ments given in Sec. 4.1, we explicitly consider all possible
numbers of relays with successful decoding as given below.

for l̂ = {0, 1, 2, .., L}

[N̄l̂ M̄s
l̂
] = argmin

[N,Ms]

"

Ms ·

 

Ns +

L
X

l=1

Nrl

!#

(10)

such that,

Ms ·
“

C
“

γADF
””

= K, (11)

Ns = 1, Nrl
∈ {1, 2, 3, 4, .....∞}. (12)

Ms ≥
K

C(Ns · γr
l̂
s)

. (13)

end loop
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[N∗ M∗
s ] = argmin

[N̄
l̂
,M̄s

l̂
]

ˆ

M̄s
l̂
·
`

Ns + N̄l̂ · [1]L×1

´˜

(14)

Let, K/C(γr0s) = K/m holds. Similar to Sec. 4.1, we

try to solve problem (10) for a specific l̂ by calculating the
marginal returns. Here, the marginal return (MR) per sym-
bol w.r.t. Ms for the function Ms ·

`

C
`

γADF
´´

with given
[Nr1

, .., Nrl
, .., NrL

] can be written as

∆Ms
=

(Ms + 1)C
`

γADF
´

− Ms · C
`

γADF
´

Ns +
PL

l=1 Nrl

(15)

=
C
`

γADF
´

1 +
PL

l=1 Nrl

. (16)

This is the gain in function Ms ·
`

C
`

γADF
´´

with per unit
increase of Ms. Increase of Ms by 1 unit (as shown in Fig. 4

with t = 1 and Ns = 1) costs extra 1+
PL

l=1 Nrl
symbols due

to the repetition coding of the relays. Therefore, we have in
the denominator 1 +

PL

l=1 Nrl
to get the gain per cost of 1

symbol.
Similarly, MR for the same function per symbol w.r.t. Nrl

for given Ms and [Nr1
, .., Nrl

, .., NrL
] can be expressed as

∆l,Nrl
=

Ms

Ms

“

C(Nsγds + γADF
1,Nr1

+ ..γADF
l,Nrl

+1 + ...γADF
L,NrL

)

− C(Nsγds + γADF
1,Nr1

+ ..γADF
l,Nrl

+ ..γADF
L,NrL

)
”

. (17)

As shown in Fig. 4, a single unit increase of Nrl
costs Ms

symbols (with t = 0), therefore, in (17) we have division by
Ms to obtain the gain per cost of 1 symbol. After finding
the marginal returns we look if they are diminishing.
We consider a modulation scheme having a capacity
`

C
`

γADF
´´

being a monotonically increasing concave func-

tion of γADF . It implies that the marginal return ∆l,Nrl
is

diminishing w.r.t. Nrl
, due to space limitations the proof

for this statement is skipped here. Moreover, it is clear that
marginal return ∆Ms

is constant w.r.t. Ms. Thus, problem
(10) can be solved by marginal returns based resource allo-
cation (Sec. 3). We start to solve problem (10) for a specific

value of l̂ of the loop as shown in Algorithm 2. First, Ms and
Nrl

∀l are initialized with the minimum possible values i.e,
K

C(Ns·γr
l̂
s)

and 0 respectively. Ms or Nrl∗
are incremented

(line 7) continuously, depending on which provides the max-
imum MR per symbol. This continues until successful de-
coding is achieved at line 11.
MR ∆Ms

is independent of Ms and remains constant as long
as Ns and Nrl

are unchanged. On the other hand, ∆l∗,Nr
l∗

is diminishing (∆l∗,Nr
l∗

≥ ∆l,Nrl
+1 ∀l), therefore, once the

condition ∆Ms
≥ ∆l∗,Nr

l∗
is satisfied, it will hold true for

all the forthcoming iterations until successful decoding at
line 11. Thus, from the condition of successful decoding,
we obtain directly the equation Ms = K

C(γADF )
instead of

incrementing Ms repeatedly to reach the same equation.
Now, we assume a situation in which ∆Ms

< ∆l∗,Nr
l∗

always holds true until successful decoding at the destina-
tion in line 11 occurs. Everything works fine until before the
last increment of Nrl∗

. We know that Nrl
can only be in-

cremented by 1 (repetition of one frame) and that a unit
increment of Nrl∗

costs Ms additional symbols as shown
in Fig. 4. It may happen that for the last retransmission
we require b < Ms symbols to successfully decode at the
destination, however, we can transmit at least Ms symbols.
Thus, Ms − b symbols are transmitted though they were not
needed. On the other hand, a unit increment of Ms costs

b symbols b’ symbols

xs

xr1

xr1

xrL

Ms t

L
P

l=1

Nrl

Figure 4: Repetitions from all the nodes, t denotes the pos-
sible increment in Ms. As an example: The source transmits
one time frame xs, relay R1 two times frame xr1

, while, relay
RL transmits xrL

.

1 +
PL

l=1 Nrl
symbols. Instead of incrementing Nrl∗

for the
last time (which allocates Ms − b symbols in vain), we con-
tinuously increment Ms and may need at most b′ symbols,
where b ≤ b′ < Ms holds. In this case, though the marginal
return per symbol ∆l∗,Nr

l∗
may be greater than ∆Ms

, the

last increment of Nrl∗
does not provide the optimum solu-

tion. This situation is dealt in line 6 and 12 of the algorithm.
In line 6, the optimal frame length (M−

s ) required to success-
fully decode at the destination without incrementing Nrl∗

is
calculated. In line 12, it is checked if the total number of
bits required for successful decoding without the increment
of Nrl∗

is less than that with the increment of Nrl∗
. If this is

true, then instead of incrementing Nrl∗
, we continuously in-

crement Ms, which automatically leads to the equation given
in line 14.
Finally, in line 16 the so far incremented values of Ms and

Nrl
∀l are considered as the optimum for a specific l̂. At the

Algorithm 2

for l̂ = {0, 1, 2, ..., L}

1: Initialization: Ms = K
C(Ns·γr

l̂
s)

, M−
s = ∞, Nrl

= 0 ∀l

2: repeat
3: Calculate ∆Ms

and ∆l,Nrl
using (15) and (17)

4: l∗ = argmax
l

(∆l,Nrl
)

5: if ∆Ms
< ∆l∗,Nr

l∗
then

6: M−
s = K

C(γADF )

7: Nrl∗
= Nrl∗

+ 1
8: else
9: Ms = K

C(γADF )

10: end if
11: until Ms · C(γADF ) ≥ K

12: if M−
s · (Ns +

L
P

l=1

Nrl
− 1) < Ms · (Ns +

L
P

l=1

Nrl
) then

13: Nrl∗
= Nrl∗

− 1

14: Ms = K

C(γADF )

15: end if
16: N̄l̂ = [Nr1

, Nr2
, ......, NrL

], M̄s
l̂
= Ms

end for
[N∗ M∗

s ] = argmin
[N̄

l̂
,M̄s

l̂
]

ˆ

M̄s
l̂
·
`

Ns + N̄l̂ · [1]L×1

´˜

end, the optimum rate R∗
s is equal to K/(M∗

s ) and N∗ being
the optimum number of transmissions required from all the
relays.

5. RESULTS

In this section the framework presented in Sec. 4 is applied
to a specific relay setup. Four relays (L = 4) were placed in
between a source and a destination. The distance between
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source and destination is 1. Moreover, 16-QAM was used as
modulation scheme. Here, Rand-IR and Rand-RC represent
the strategies with random allocation of the bits for Incre-
mental Redundancy (IR) and Repetition Coding (RC) re-
spectively. This is similar to the allocation of bits in [6], how-
ever, each bit or transmission is allocated with equal proba-
bility to a node. In Rand-IR the source continuously trans-
mits symbols until one or more relays decode successfully.
Afterwards, a symbol is randomly (with equal probability)
allocated to the source or to each of the relay with successful
decoding. In the case of Rand-RC, first the source chooses
randomly Ms in the range2 (K/m, K/C(γds)), where, m = 4
represents the number of code bits mapped to a channel sym-
bol by the modulator. Afterwards, Ns or Nrl

∀l are ran-
domly incremented with equal probability. These scenarios
do not require channel knowledge for the resource alloca-
tion.
In the scenario No-Relay, the source chooses the optimum
rate and transmits to the destination without relay.
Opt-IR and Opt-RC corresponds to the optimization meth-
ods provided in Sec. 4 for IR and RC respectively and require
global channel knowledge. Fig. 5 shows the average through-
put for the mentioned strategies. Throughput η is defined as
the info length K divided by the sum of the symbols trans-
mitted from the source and all of the relays.
This figure shows that Opt-RC performs 2 dB worse than
Opt-IR. It means that higher complexity for implementing
IR (as compared to that of RC) can be avoided by using RC
with the loss of 2 dB. At high SNR, both of the strategies
reach the maximum of the capacity of 16-QAM.
It is evident that Opt-IR and Opt-RC outperform No-Relay
by 5 dB and 3 dB respectively. Moreover, it is also clear
that random resource allocation performs significantly worse
than No-Relay. It means that if the source can adjust its
rate according to the source-destination capacity then there
is no need to use relay network with random resource allo-
cation. The figure also shows that strategy Opt-IR outper-
forms strategy Rand-IR by 10 dB at low SNR and by 15 dB
at high SNR.
The optimization of repetition coding (Opt-RC) provides
gain of 10 dB over random symbols allocation (Rand-RC)
at low SNR. At high SNR, Opt-RC saturates to 4, while
Rand-RC saturates to the maximum possible throughput 2.
Rand-RC saturates to 2 because first the source transmits
K/m < Ms < K/C(γds) symbols, which can not ensure suc-
cessful decoding at the destination. Therefore, the source or
relay transmits another Ms symbols which results in the loss
of half of the throughput. This shows that the optimization
of the rates using global channel knowledge for Opt-IR and
Opt-RC can deliver significant gains.
This figure also reveals that the maximum number of trans-
missions (Nmax

s ) the source is allowed to transmit has no
influence on the throughput, as long as the optimum code
rate is chosen. As the optimization algorithm is only de-
scribed for Nmax

s = 1. For Nmax
s > 1, the algorithm was

run repeatedly for each value of Ns and then the optimum
one was chosen.

6. CONCLUSION

In this paper, throughput analysis of incremental redun-
dancy and repetition coding in parallel multi-relay network
has been provided. A general optimization method for rate
and number of transmissions allocation for both the strate-
gies is provided. It is shown that for the given parallel re-
lay network setup, incremental redundancy always outper-
forms repetition coding. Moreover, if the source is allowed

2This range is natural, if we choose Ms > K/C(γds) then it
results in successful decoding and no cooperation is required. It
will be very inefficient at low SNR.
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Figure 5: Throughput versus pseudo SNR 1/N0, with the re-
lays are placed in the middle, Nmax

s is the maximum number
of transmissions the source is allowed to transmit.

to choose an optimum code rate, then only one transmission
(Ns = 1) from the source is optimal.
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