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ABSTRACT

This paper presents a novel approach to the time-recursive sparse
system identification task by revisiting the classical Wiener-Hopf
equation. The proposed methodology is built on the concept of
the Moreau envelope of a convex function. The objective of em-
ploying such a convex analytic tool is twofold: i) it penalizes the
deviations from the Wiener-Hopf equation, which are often met in
practice due to outliers, model inaccuracies, etc, and ii) it fortifies
the method against strongly correlated input signal samples. The
resulting algorithm enjoys a clear geometrical description; the a-
priori information on sparsity is exploited by the introduction of a
sequence of weighted ℓ1 balls, and the recursions are obtained by
simple relations based on the generic tool of projections onto closed
convex sets. The method is tested against the state-of-the-art batch
and time-recursive techniques, and in several scenarios, which also
include signal recovery tasks. The proposed design shows a com-
petitive performance in cases where the model is corrupted by Gaus-
sian noise, and excels in scenarios of non-Gaussian heavy-tailed
noise processes, albeit at a higher complexity.

1. INTRODUCTION

First, let us introduce some notation. The set of all integers, non-
negative integers, positive integers, and real numbers are denoted
by Z,Z≥0, Z>0, and R. Vector and matrix quantities are denoted by

boldfaced symbols, and the operator (⋅)t stands for vector/matrix
transposition. Given two integers j1, j2 ∈ Z, such that j1 ≤ j2, let

j1, j2 ∶= { j1, j1+1, . . . , j2}. Throughout the manuscript, n ∈Z≥0 de-
notes discrete time.

The present study focuses on the following task: given a se-

quence of observations (xxxn)n∈Z≥0
⊂R

L, L ∈Z>0, and (yn)n∈Z≥0
⊂R,

that are related via the linear model:

yn = xxx
t
nhhh∗+vn, ∀n ∈ Z≥0, (1)

obtain an estimate of the unknown hhh∗, which is assumed to be
sparse. The sequence (vn)n∈Z≥0

⊂ R stands for a zero mean noise

process. The input signal (xxxn)n∈Z>0
is considered to be independent

of (vn)n∈Z≥0
. The approach, which we follow in this paper, is that

of the time-adaptive nature. In other words, we search for algo-
rithms that operate via simple recursive rules, in an online fashion,
as the new training data are received at each time instant, n ∈ Z>0.
This approach is in contrast to batch methods, where processing is
performed on data blocks and off-line.

Next we provide with a few definitions related to the concept
of sparsity. The support of a vector hhh is defined as supp(hhh) ∶= {i ∈

1,L ∶ hi ≠ 0}, and the ℓ0-norm of hhh is simply the cardinality of

its support, i.e., ∥hhh∥ℓ0
∶= #supp(hhh). The vector hhh∗ ∈ R

L is called
sparse if ∥hhh∗∥ℓ0

≪ L. Sparsity-aware methods have been gaining,
recently, an interest of exponential growth, due to the revolutionary
point of view that the Compressed Sensing or Sampling (CS) frame-
work [1] has brought into estimation tasks; if sparsity, which per-
vades a very large number of signal/system models, is appropriately
utilized, usually by convex analysis, then it takes far fewer samples

than it was traditionally necessary in order to perfectly reconstruct
the sparse signal/system.

For the sake of illustration, let us assume here that (xxxn)n∈Z≥0

is weakly stationary. It is well-known [2] that if we define XXXn ∶=[xxx0, . . . ,xxxn] ∈ RL×(n+1), yyyn ∶= [y0, . . . ,yn]t ∈ Rn+1, ∀n ∈ Z≥0, then
the Least-Squares (LS) estimation task has the following solution

set: V ∶= argminhhh∈RL E∥XXX t
nhhh−yyyn∥2 = {hhh ∈ RL ∶ RRRhhh = rrr} ≠ ∅, where

E stands for expectation, ∥⋅∥ for the Euclidean norm in R
L, RRR ∶=

E(xxxnxxxtn), and rrr ∶= E(ynxxxn), ∀n ∈ Z≥0. It is an easy task to verify by
(1) that hhh∗ belongs to the setV , which is defined by the Wiener-Hopf
equation: RRRhhh = rrr. The classical Recursive Least-Squares (RLS) al-
gorithm [2] is built around this equation; having available a certain
sequence of estimates (R̃RRn, r̃rrn)n∈Z≥0

of (RRR,rrr), the RLS computes

the inverse R̃RR
−1
n efficiently, and uses also the knowledge of r̃rrn in

order to obtain an estimate of hhh∗, ∀n ∈ Z≥0.

A novel view of the least-squares rationale was introduced in
[3]. Non-smooth convex analytic arguments [4] were used in or-
der to penalize deviations from the Wiener-Hopf equation. Given
the estimates (R̃RRn, r̃rrn), such a penalization was achieved by user-
defined, convex, and not necessary differentiable, loss functions

which evaluate the deviation R̃RRnhhh− r̃rrn, for any hhh ∈ R
L. Put in ge-

ometrical terms, an equivalent description of the previous penaliza-
tion task is the construction of a sequence of closed convex sets(Sn)n∈Z≥0

which contain hhh∗ with high probability. In order to solve
the associated convex feasibility task, i.e., find a point in ⋂n≥n0

Sn,
for some n0 ∈ Z≥0, the study in [3] introduced a sparsity-aware,
time-recursive algorithm, realized by simple iterations, with a com-

putational complexity of orderO(3L2). A notable advantage of the
proposed method was that the computation of a sequence of inverses

(R̃RR−1
n )n∈Z≥0

, as in the classical RLS, was no longer necessary. The
methodology of [3] belongs to the rich algorithmic family of [5–7].
In such a way, convergence results, based on very recent advances of
time-adaptive convex feasibility tasks [7] can be obtained. More im-
portantly, the study of [3] benefits from the rich variety of tools for
exploiting the available a-priori information [7], such as the sparsity
of hhh∗. The method showed excellent performance for sparse signal
recovery tasks [3].

However, it was observed that the performance of the method
in [3] deteriorates when applied to system identification tasks where
the input signal samples (xxxn)n∈Z≥0

show strong correlation. The
goal of the present paper is to propose a novel technique in order
to remedy this sensitivity of [3]. The new approach is based on the
notion of the Moreau envelope of a convex function [4,8], which has
been very recently popularized in signal processing tasks [9,10]. To
validate this new methodology, a series of experiments is presented
for both signal recovery and system identification tasks. Indeed, the
new methodology shows competitive behavior when compared to
the state-of-the-art batch and time-adaptive techniques in scenarios
where the noise process (vn)n∈Z≥0

of (1) is Gaussian, and excels in

scenarios where (vn)n∈Z≥0
becomes heavy-tailed and non-Gaussian.
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2. PENALIZING THE DEVIATIONS FROM THE
WIENER-HOPF EQUATION

In this section, we will present in short the basic ingredient behind
the methodology of [3]. We will also give a geometrical explanation
for the reason behind the sensitivity of [3] to system identification
tasks where the input signal samples show strong correlation.

Assume that available to us, at the time instant n, are the
estimates R̃RRn and r̃rrn of RRR and rrr, respectively. For example, in

this study, we will use ∀n ∈ Z≥0, R̃RRn ∶=
1
N ∑n

j=n−N+1 xxx jxxx
t
j , r̃rrn ∶=

1
N ∑n

j=n−N+1 y jxxx j , where N ∈ Z>0 denotes the size of a window.

Having at our disposal the estimates (R̃RRn, r̃rrn), and by mimick-
ing the Wiener-Hopf equation, a natural choice for a place to look

for hhh∗ is the affine set Vn ∶= {hhh ∈ RL ∶ R̃RRnhhh = r̃rrn}. In general, there
is no guarantee that hhh∗ belongs to Vn. Outliers, model inaccura-
cies, as well as calibration errors may result into estimates (R̃RRn, r̃rrn)
which form a Vn that deviates from the one generated by the classi-

cal Wiener-Hopf equation, i.e., V ∶= {hhh ∈RL ∶RRRhhh = rrr}. It is therefore
desirable to “enlarge” Vn to a set Sn that accommodates such devia-
tions, shows robustness to outliers and inaccuracies, which are often
met in practice, particularly for small values of n, and increases the
probability of having hhh∗ lying into Sn, ∀n ∈ Z≥0.

Let any convex loss function L ∶ RL
→ R. Motivated by the

path of robust statistics [11], we will enhance L with robustness
properties. First of all, for every n, define the composite func-

tion Θn(hhh) ∶= L(R̃RRnhhh− r̃rrn), ∀hhh ∈ RL. Notice that since L is con-

vex, and R̃RRnhhh− r̃rrn is an affine transformation of hhh, the loss func-
tion Θn is also convex [4]. Now, given a tolerance ε ≥ 0, let us

introduce here the ε-insensitive version of Θn; Θ
(ε)
n ∶RL

→ [0,∞) ∶
hhh↦ max{0,Θn(hhh)− ε}. The 0-th level set of Θ

(ε)
n is defined as:

∀n ∈ Z≥0, lev≤0 Θ
(ε)
n ∶= {hhh ∈ RL ∶ Θ

(ε)
n (hhh) ≤ ε}. If L and ε are

chosen such that L(000) ≤ ε, then clearly Vn ⊂ lev≤0 Θ
(ε)
n . Hence,

Sn ∶= lev≤0 Θ
(ε)
n serves as a candidate for the “enlarged”Vn. In other

words, we allow our solution set to be larger than Vn. The “shape”

of lev≤0 Θ
(ε)
n is dictated by the choice of L. A standard choice

for L is the quadratic function L = 1
2
∥⋅∥2. Nevertheless, the study

in [3] gave the freedom to employ any convex and not necessarily
differentiableL, provided that the associated subgradients (see Sec-
tion 3.2) exist and are available in closed form. In such a way, the
choice of L is not constrained by the differentiability condition, and
the designer can choose from a large variety of convex functions
in order to penalize the deviations R̃RRnhhh− r̃rrn, like any ℓp-norm, with
p ∈Z>0, the ℓ∞-norm, the negative log function, the Huber loss, etc.

The methodology of [3] exhibited excellent performance in sig-
nal recovery tasks, where the input signal (xxxn)n∈Z≥0

becomes an
i.i.d. vector-valued random process. However, it deteriorates when
applied to system identification problems, in scenarios where the
input signal (xxxn)n∈Z≥0

is a strongly correlated process. An explana-
tion for such a sensitivity comes from the shape of the 0-th level set

lev≤0 Θ
(ε)
n . For example, if one chooses the quadratic function, as

the basic module L, then for a strongly correlated input signal, the

condition number of the matrix R̃RRn is large, and lev≤0 Θ
(ε)
n becomes

highly elongated. Solving a convex feasibility problem, i.e., finding

a point in ⋂n≥n0
lev≤0 Θ

(ε)
n , for some n0 ∈ Z≥0, may result into a

point that is located far from the desired hhh∗, in spite of the fact that
the latter is also contained, with high probability, in the elongated

lev≤0 Θ
(ε)
n , for a large number of n ∈ Z≥0.

Hence, to remedy such an unpleasant situation, a solution

would be to “blow up” the elongated (lev≤0 Θ
(ε)
n )n∈Z≥0

. Naturally,
the following question arises: how can we “blow up” the closed

convex sets (lev≤0 Θ
(ε)
n )n∈Z≥0

in a way that respects their original

shape, or in other words, the characteristics of the matrix R̃RRn, and,
more importantly, escapes from the classical approach of diagonally
loading R̃RRn, ∀n ∈Z≥0? The Moreau envelope [4,8] of a convex func-

τ

τ2 ∣τ ∣

e∣⋅∣,γ(τ)e(⋅)2,γ(τ)

Figure 1: Illustration of the Moreau envelope for two simple ex-
amples of convex functions: i) the differentiable quadratic function,
and ii) the non-differentiable absolute value function. Notice that
the Moreau envelope of the absolute value function is a scaled ver-
sion of the well-known Huber function [12], widely used in robust
statistics [11].

tion gives an answer to this question.

3. A FEW ELEMENTS OF CONVEX ANALYSIS

3.1 Moreau envelopes.

Given a convex function Θ ∶RL
→R, its Moreau envelope [4,8–10],

for some γ > 0, is defined as the function

eΘ,γ(hhh) ∶= min
vvv∈RL
(Θ(vvv)+ 1

2γ
∥hhh−vvv∥2) , ∀hhh ∈RL

. (2)

An illustration of the Moreau envelope is given in Fig. 1. It turns
out [8–10] that the minimizer of (2) is unique, so that one can define
the proximity mapping of index γ of Θ [8–10] as follows:

proxγΘ(hhh) ∶= argminvvv∈RL (Θ(vvv)+ 1

2γ
∥hhh−vvv∥2) , ∀hhh ∈RL

. (3)

Fact 1 (Selected properties of the Moreau envelope [4, 9, 10]).

Given a convex function Θ ∶ RL
→ R, its Moreau envelope eΘ,γ ∶

R
L
→R satisfies the following properties.

1. ∀γ > 0, and ∀hhh ∈RL, we have eΘ,γ(hhh) ≤Θ(hhh).
2. The Moreau envelope eΘ,γ converges pointwise to Θ as γ → 0,

i.e., limγ→0 eΘ,γ(hhh) =Θ(hhh), ∀hhh ∈RL.

3. The Moreau envelope eΘ,γ is differentiable with ∇eΘ,γ(hhh) =(hhh−proxγΘ(hhh))/γ , ∀hhh ∈RL.

For example, it can be easily verified, by a simple differentia-
tion, that the proximity mapping, of index γ > 0, which relates to the
function:

Θn(hhh) ∶= 1

2
∥R̃RRnhhh− r̃rrn∥2, ∀hhh ∈RL

,∀n ∈ Z≥0, (4)

is

proxγΘn
(hhh) = (R̃RR2

n+
1

γ
III)−1(hhh

γ
+ R̃RRnr̃rrn) . (5)

The previous expression of the proximity mapping helps us not only
to calculate the value of the Moreau envelope eΘn,γ at a point hhh, but

also its differential ∇eΘn,γ(hhh), by employing Fact 1.3.

3.2 Subgradients.

Given a convex function Θ ∶ RL
→ R, the subdifferential ∂Θ is

defined as the set-valued mapping: hhh Z⇒ ∂Θ(hhh) ∶= {yyy ∈ RL ∶ ∀vvv ∈

R
L,yyyt(vvv− hhh)+Θ(hhh) ≤ Θ(vvv)}. In the case where Θ is continuous

at hhh, then ∂Θ(hhh) ≠ ∅ [4]. Any element in ∂Θ(hhh) will be called a

subgradient of Θ at hhh, and will be denoted by Θ′(hhh). If Θ is dif-
ferentiable at hhh, then ∂Θ(hhh) becomes a singleton, and the unique
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element of ∂Θ(hhh) is nothing but the classical differential of Θ at hhh.
Notice, also, that 000 ∈ ∂Θ(hhh)⇔ hhh ∈ argminvvv∈RL Θ(vvv).

Hence, the subdifferential mapping of the ε-insensitive version
of the Moreau envelope eΘn,γ becomes as follows:

∂e
(ε)
Θ,γ(hhh) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{000}, if eΘ,γ(hhh) < ε,

{τ∇eΘ,γ(hhh) ∶ τ ∈ [0,1]}, if eΘ,γ(hhh) = ε,

{∇eΘ,γ(hhh)}, if eΘ,γ(hhh) > ε.

(6)

The previous results can be reproduced by using standard arguments
of convex analysis, e.g., [4].

3.3 Projection mappings onto closed convex sets.

Given any nonempty closed convex set C ⊂RL, the (metric) projec-

tion onto C is defined as the mapping PC ∶ R
L
→C which takes any

hhh ∈ R to the (unique) point in C that lies the closest from hhh, i.e.,∥hhh−PC(hhh)∥ = infvvv∈C ∥hhh−vvv∥. The relaxed (metric) projection map-

ping is defined as: T
(α)
C
∶= I+α(PC−I), α ∈ (0,2), where I denotes

the identity mapping in R
L.

The weighted ℓ1 ball is defined as the closed convex set:

Bℓ1
[www,ρ] ∶={hhh ∈RL ∶∑L

i=1wi∣hi∣≤ρ}, wherewww ∶= [w1, . . . ,wL]t ∈RL

has positive components, and ρ is a positive number denoting the
radius of the weighted ball. For example, the standard ℓ1 ball is

nothing but Bℓ1
[111,ρ], where 111 ∈ RL is a vector of unities. The

closed form expression of the metric projection PBℓ1
[www,ρ] can be

found in [13].

4. THE ALGORITHM

So far, we introduced all the necessary tools on which our new al-
gorithm will be built on. In this section, we will introduce a simple
recursion which generates a sequence of estimates (hhhn)n∈Z≥0

for
approximating the desired sparse hhh∗.

4.1 Learning from the training data

The sequentially arriving training data (xxxn,yn)n∈Z≥0
are exploited in

order to form an associated sequence of estimates (R̃RRn, r̃rrn)n∈Z≥0
of(RRR,rrr). According to the discussion in Sections 2 and 3, we adopt

the following steps: a) we choose as the seed convex function the LS

one, L ∶= ∥⋅∥2/2, b) we form the following sequence of composite

functions Θn(hhh) ∶=L(R̃RRnhhh− r̃rrn), ∀hhh ∈RL, ∀n ∈Z≥0, given in (4), c)
we form their Moreau envelopes, (eΘn,γ)n∈Z≥0

, of some index γ > 0,

and finally d) we construct their ε-insensitive versions (e(ε)Θn,γ
)n∈Z≥0

,

for some user-defined ε > 0. The values of (e(ε)Θn,γ
)n∈Z≥0

as well as

the choices for a subgradient e
(ε)
Θn,γ

′(hhh), at some point hhh, can be

obtained by the discussion in Section 3, and more specifically, by
(5), Fact 1.3, and (6).

4.2 Exploiting sparsity

As it was observed in [1,14,15], and as we also verified in [13] in the
case of an unknown system that we know it is sparse, the recursive
re-weighting of an ℓ1-norm term improves not only the convergence
speed of the algorithm, but also decreases its mis-adjustment level.
We will follow the same approach also in this study and consider a
sequence (Bℓ1

[wwwn,ρn])n∈Z≥0
, where ρn stands for the radius of the

weighted ℓ1 balls, ∀n ∈ Z≥0. To this end, for a time instant n ∈ Z≥0,
and assuming that we have at our disposal the current estimate hhhn,
we inductively define wwwn, and thus Bℓ1

[wwwn,ρn], as follows: wn,i ∶=

1/(max{∣hn,i∣, ε̌}), ∀i ∈ 1,L, ∀n ∈ Z≥0, where ε̌ is a user-defined
sufficiently small positive parameter, introduced in order to avoid
divisions by zeros. By following similar arguments to the ones in
[13], it can be shown that the previous choice of (wwwn)n∈Z≥0

leads
to an interpretation of the parameter ρn, n ∈ Z≥0, as an estimate
of ∥hhh∗∥ℓ0

. Such a perspective suggests that any information about

∥hhh∗∥ℓ0
, obtained either a-priori or in an online fashion, can be used

in the definition of the sequence of parameters (ρn)n∈Z≥0
. More

accurately, any over-estimation of ∥hhh∗∥ℓ0
can serve as a candidate

for ρn, n ∈ Z≥0, since if ρ ≤ ρ′, then Bℓ1
[www,ρ] ⊂ Bℓ1

[www,ρ′]. To
save space, the present study will assume that the information about∥hhh∗∥ℓ0

, which enters the design via ρn, n ∈Z≥0, is available a-priori.
A scheme for employing information about ∥hhh∗∥ℓ0

, that is obtained
in an online fashion, is deferred to a future work.

4.3 The recursion

Any element of RL is suitable for the starting point hhh0 ∈R
L. Given

the current estimate hhhn, hhhn+1 is computed as follows:

hhhn+1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(αn)
Bℓ1
[wwwn,ρn]

(hhhn+1−λn
e
(ε)
Θn ,γ
(hhhn)

∥e
(ε)
Θn ,γ

′
(hhhn)∥2

e
(ε)
Θn,γ

′(hhhn)) ,
if e
(ε)
Θn,γ

′(hhhn) ≠ 000,

T
(αn)
Bℓ1
[wwwn,ρn]

(hhhn), if e
(ε)
Θn,γ

′(hhhn) = 000,

(7)

where T
(αn)
Bℓ1
[wwwn,ρn]

is the relaxed projection mapping, defined in Sec-

tion 3.3, and e
(ε)
Θn,γ

′(hhhn) stands for any subgradient of e
(ε)
Θn,γ

at hhhn.

Both of the user-defined parameters αn,λn ∈ (0,2).
It turns out that the basic recursion (7) obtains a simple ge-

ometrical interpretation. The term in the large parenthesis of (7)
is nothing but the relaxed subgradient projection mapping [7] with

respect to the function e
(ε)
Θn,γ

. This mapping has the following re-

markable property; given the current estimate hhhn, the subgradient

projection mapping takes hhhn closer to the 0-th level set lev≤0 e
(ε)
Θn,γ

,

if hhhn ∉ lev≤0 e
(ε)
Θn,γ

, and leaves hhhn unaffected if hhhn ∈ lev≤0 e
(ε)
Θn,γ

. Af-

terwords, the relaxed projection mapping onto the weighted ℓ1 ball
Bℓ1
[wwwn,ρn] is applied.
The main contribution to the complexity of the proposed algo-

rithm comes from the matrix inversion in (5). Currently, efficient
schemes to reduce the computational complexity are under inves-
tigation. We note here that the algorithm introduced in [3], where
the Moreau envelope is not employed, and a matrix inversion is not

necessary, is of order O(3L2).
The recursion (7) belongs to the rich algorithmic family of [7].

In this way, (7) benefits from the general convergence analysis re-
sults, and the large variety of a-priori information usage found in
the very recent study of [7]. A detailed description of this family,
by using simple geometrical arguments, for linear and non-linear es-
timation tasks is given in [16]. A different philosophy, than the one
presented in this study, which also exploits sparsity and the Moreau
envelope in time-recursive algorithms, can be found in [17].

5. NUMERICAL EXAMPLES

This section validates the proposed methodology for the two funda-
mental tasks of signal recovery and system identification. More-
over, two scenarios will be followed for the additive noise pro-
cess (vn)n∈Z≥0

in (1); one where the noise is Gaussian, and an-
other where it obeys the heavy-tailed student’s-t distribution [18].
The proposed design will be validated against both batch and time-
recursive techniques. Although the batch techniques do not fit in
the time-adaptive rationale of this manuscript, since they perform
computation in an off-line fashion, they were chosen as benchmarks
against which the performance of the novel algorithm will be tested
in the subsequent figures. Hence, the classical LASSO [19], and its
variant, the weighted LASSO [14] were considered. As for the time-
adaptive schemes, the classical RLS [2], and the RLS-based OCCD-
TNWL [15] were employed. In the following figures, the tag “Pro-
posed wo Moreau” corresponds to the introduced method without

using the Moreau envelope, i.e., the case where Θ
(ε)
n takes the

place of e
(ε)
Θn,γ

in (7), and which was introduced in [3]. Clearly, the
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Figure 2: The i.i.d. noise process (vn)n∈Z≥0
follows the Gaussian

distribution with zero mean and variance equal to 0.1. The unknown

hhh∗ ∈R
100, with ∥hhh∗∥ℓ0

∶= 5.

tag “Proposed Moreau” associates to the proposed method with the
Moreau envelope approach. Moreover, the Mean Square Deviation

(MSD) is defined as MSD(n) ∶= 1
LQ∑Q

q=1
∥hhh∗−hhh(q)n ∥2, ∀n ∈ Z≥0,

where Q is the total number of independent runs of the experi-
ment. Here, Q ∶= 100. Here, the case of L ∶= 100 is considered,

i.e., the unknown sparse signal/system hhh∗ ∈ R
100. Moreover, we

let ∥hhh∗∥ℓ0
∶= 5. For each realization of the experiment, the non-

zero components of hhh∗ are drawn from a Gaussian distribution of
zero mean and variance equal to 1. Their locations, within hhh∗, are
defined randomly for each realization. All of the employed meth-
ods were carefully tuned to produce their best performance for each
adopted scenario.

For all the subsequent numerical examples, the following values
were assigned to the parameters of the proposed method; ε, met in
Section 2, takes the value of 0, the αn, which defines the relaxed
projection mapping of Section 3.3, is set equal to 0.75, ∀n ∈ Z≥0,
the relaxation parameter λn of (7) takes the value of 1, ∀n ∈ Z≥0,

and ε̌ , of Section 4.2, becomes 10−6. For this paper, the size N of
the sliding window, met in Section 2, is set equal to the total number
of the training data. Similarly, the employed RLS-based techniques
assume infinite memory with respect to the training data, and set
the value of their forgetting factor equal to 1. The value of 0.75
was chosen for αn in order to realize an under-relaxed, i.e., αn <

1, projection mapping T
(αn)
Bℓ1
[wwwn,ρn]

. We adopted such a conservative
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(a) Signal recovery task.
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(b) System identification task.

Figure 3: The i.i.d. noise process (vn)n∈Z≥0
follows the heavy-tailed

student’s-t distribution [18] with zero mean, variance equal to 0.1,
and degree of freedom ν ∶= 2.001.

approach, towards the weighted ℓ1 ball, for obtaining smooth curves
in all of the figures in this study. We noticed that values of αn ≥

1, i.e., the exact or an over-relaxation of the projection onto the
weighted ℓ1 ball, offer sequence of estimates with a fast speed of
convergence, at the expense of non-smooth curves in the figures.
Regarding ε, although the choice of ε ∶= 0 seems rather restrictive,
we did so since such a choice draws some interesting implications
in the numerical examples of Fig. 3. Moreover, we noticed that
the proposed method resulted into similar behavior for values of ε̌

within the interval [10−3,10−10]; hence the choice of ε̌ ∶= 10−6.

Fig. 2 refers to the case where the noise (vn)n∈Z≥0
is an i.i.d.

Gaussian process, with zero mean and variance equal to 0.1. In
Fig. 2a, the signal recovery problem is considered. The input signal(xxxn)n∈Z is defined as a discrete-time vector-valued Gaussian pro-
cess of zero mean, such that the components of each xxxn are mutu-
ally independent, with variance equal to 1. In addition, the index
for the Moreau envelope is set equal to γ ∶= 10. It is worth notic-
ing that both the Moreau envelope approach as well as the proposed
technique, without the Moreau regularization, perform equally well
for the signal recovery task.

Next, in Fig. 2b, is the system identification task. The in-

put signal (xxxn)n∈Z≥0
becomes, now, xxxn ∶= [xn, . . . ,xn−L+1]T , where(xn)n∈Z≥0

is a strongly correlated Auto-Regressive (AR) process,

given by xn ∶= −0.9xn−1 +
√

1−0.92ξn, ∀n ∈ Z≥0, and (ξn)n∈Z≥0
is

an i.i.d. Gaussian process, with zero mean and variance equal to
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1. Due to the high correlation of the input signal, in this signal
identification task, the index of the Moreau envelope is set equal to

γ ∶= 104. We stress here that the larger the index γ , the more dom-
inant the Moreau regularization in (2) is. It is natural to ask for a
stronger regularization, than in the signal recovery case of Fig. 2a,
in order to overcome the difficulties imposed by the highly corre-
lated AR input signal. Indeed, without the Moreau regularization,
the proposed method fails to produce an acceptable performance for
this sparse system identification problem. The introduced Moreau
approach produces a performance which is inferior to the OCCD-
TNWL. We noticed, however, that the proposed method, both with
and without the Moreau regularization, resulted into a similar per-
formance to the OCCD-TNWL for weakly correlated input signal
samples.

Fig. 3 examines the case where the additive noise process(vn)n∈Z≥0
becomes non-Gaussian, and, in particular, heavy-tailed.

For such a reason, the model (1) becomes prone to outliers. To
realize such a heavy-tailed distribution, the zero mean student’s-t
distribution [18] was considered, with ν ∶= 2.001 degrees of free-
dom. The closer ν goes to 2, the heavier the tails of this pdf are.
Its variance was set equal to 0.1. In Fig. 3a, the signal recov-

ery task of the sparse signal hhh∗ ∈ R
100, with ∥hhh∗∥ℓ0

∶= 5 is exam-
ined. As in the Gaussian noise case, the index of the Moreau en-
velope takes the value of γ ∶= 10. It is easy to notice, by Fig. 3a,
that the proposed method performs remarkably well against out-
liers caused by the heavy-tailed noise. The performance of the pro-
posed method remains very close to the batch LASSO, even when
the over-estimation of the support of hhh∗ is up to 100%, i.e., 10 in-
stead of the actual 5.

For the case of the sparse system identification problem, de-
picted in Fig. 3b, the input signal follows the strongly correlated
AR signal of the Gaussian noise case, met in Fig. 2. The index of

the Moreau envelope takes the value of γ ∶= 104. As Fig. 3b demon-
strates, although the lack of the Moreau regularization results into
a failure of the proposed method, the introduction of the Moreau
envelope shows the best performance among all the employed tech-
niques. The performance remains remarkably robust even when
there is a large ambiguity on the over-estimation of the support of
hhh∗, i.e., the case where ρn ∶= 10, ∀n ∈ Z≥0. As in Fig. 2, we no-
ticed that also for the scenario of heavy-tailed noise, the proposed
method, both with and without the Moreau regularization, resulted
into a similar performance to the OCCD-TNWL for weakly corre-
lated input signal samples.

Regarding the case of Fig. 3, there are some interesting impli-
cations drawn from the choice of ε ∶= 0. It can be verified, by the

properties of the Moreau envelope, that for ε ∶= 0, lev≤0 e
(0)
Θn,γ
=Vn =

{hhh ∈RL ∶ R̃RRnhhh = r̃rrn}. We have also seen in Section 2 that ∀n ∈ Z≥0,

the set Vn is an approximation of V ∶= {hhh ∈ RL ∶ RRRhhh = rrr}, defined
by the Wiener-Hopf equation, and around which all the RLS-based
algorithms revolve. Fig. 3 clearly implies that even if the proposed
method aims to the same solution set as all the RLS-based methods
do, since we set ε ∶= 0, the way that Vn is handled shows a remark-
able robustness against non-Gaussian, heavy-tailed noise processes,
as opposed to the sensitivity that the RLS-based techniques demon-
strate.

6. CONCLUSIONS

Based on a new perspective of the classical Wiener-Hopf equation,
the present study introduced a convex analytic framework in order
to fortify projection-based time-recursive algorithms against system
identification tasks with strongly correlated input signal samples.
The basic tool is the Moreau envelope of a convex function. The
proposed methodology enjoys a clear geometrical description, and
belongs to the rich algorithmic frame of [5–7]. In this way, it ben-
efits from the general convergence analysis results, and the large
variety of a-priori information usage found in the very recent study
of [7]. Such a convergence analysis, efficient methods to reduce
the computational complexity of the proposed method, and numer-

ical examples for a larger collection of signal/system scenarios are
deferred to a future work.
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