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ABSTRACT 

This paper presents a novel approach to implement 
adaptive Volterra filters with reduced complexity aiming at 
echo cancellation applications. The proposed approach is 
based on combining two different strategies in order to 
reduce the computational burden of adaptive Volterra 
structures, namely shortening the number of kernel 
diagonals and using a sparse-interpolated setup. As a 
result, an efficient diagonally-interpolated Volterra 
implementation is achieved, offering a controllable trade-
off between complexity and performance. Simulation 
results considering a real-world network echo cancellation 
problem attest the effectiveness of the proposed approach. 

1. INTRODUCTION 

A usual problem in many telephone systems is the 
occurrence of echo signals that, in the case of voice 
communications, may significantly interfere in the 
conversation flow. Moreover, echoes have an important 
impact on the performance of voice over IP (VoIP) [1] and 
speech recognition systems [2], which have been 
increasingly used over the last few years. In this context, 
the use of echo cancellation systems has become essential 
to guarantee the quality and reliability of telephone 
communications.  

A common approach to perform echo cancellation is 
the use of linear adaptive filters to model the echo path and 
generate an echo replica which is subtracted from the 
received signal [3]. However, such an approach often does 
not fulfill the performance requirements due to the presence 
of nonlinear distortions in the echo path [3]. In these cases, 
the use of nonlinear adaptive filters, such as the Volterra 
filter, may be necessary to obtain satisfactory performance 
[3]. 

Volterra filters have been used successfully in network 
and acoustic echo cancellation schemes [4]-[6]. In general, 
these schemes use reduced-complexity Volterra 
implementations due to the high computational 
requirements of the standard Volterra filters [4]-[6]. A 
usual strategy for obtaining such reduced-complexity 
implementations is to discard from the standard Volterra 
filter either non-dominant kernels or kernel diagonals [4]-
[5]. The drawback of the resulting sparse approaches is that 
no mechanism is adopted to offset the loss of performance 
that arises from discarding entire kernels or parts of them. 

In this framework, sparse-interpolated implementations [7] 
may be of interest since they use an interpolation scheme to 
compensate for the loss of performance arising from the 
strictly-sparse approaches. Thereby, sparse-interpolated 
structures bear an equivalent non-sparse characteristic 
despite using sparseness for complexity reduction [7]. 

In this paper, a novel strategy to efficiently implement 
adaptive Volterra filters is proposed. The central idea here 
is to develop a sparse-interpolated scheme which allows the 
implementation of Volterra structures presenting a reduced 
number of kernel diagonals, such as the simplified Volterra 
filters [4] and the power filters [5]. Thus, the computational 
burden is reduced by shortening the number of diagonals as 
well as by using both sparseness and interpolation. As a 
result, a scalable structure termed diagonally-interpolated 
Volterra filter is achieved. Such an approach leads to a 
structure of filtering with a changeable trade-off between 
complexity and performance. Simulation results 
considering a network echo cancellation problem with 
signals from a real-world application are presented aiming 
to verify the effectiveness of the proposed approach.  

This paper is organized as follows. Section 2 describes 
the basics of Volterra filtering, the diagonal coordinate 
implementation and the sparse-interpolated approach. In 
Section 3, the diagonally-interpolated Volterra approach is 
discussed as well as the update of its coefficients by using 
an adaptive normalized least-mean-square (NLMS) 
algorithm. Section 4 presents the simulation results. 
Finally, in Section 5, concluding remarks are presented. 

2. BACKGROUND ON STANDARD, DIAGONAL 
COORDINATE AND SPARSE-INTERPOLATED 

VOLTERRA FILTERS 

In this section, we briefly review the standard Volterra 
filter as well as its implementations based on exploiting the 
diagonal coordinate representation and sparse-interpolated 
structures. 

2.1. Standard Volterra Filter 
As described in [3], the input-output relationship of the 
Volterra filter can be written as the sum of the outputs of 
kernels with distinct orders. Thus,  
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with ( )y n  denoting the output signal, ,P  the filter order, 
and ( ),py n  the output of each kernel, which is given by 
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where ( )x n  denotes the input signal, ,N  the memory size, 
and 1 2( , , , ),p ph m m m…  the th-orderp  filter coefficients. It 
is important to highlight that (2) corresponds to both the 
triangular [3] and redundancy-removed [7] Volterra 
implementations, which are obtained removing the 
redundant kernel coefficients with no loss of generality. In 
this work, the focus is on second-order Volterra 
implementations due to the characteristics of the 
application used. For this case, the input-output relationship 
obtained from (1) and (2) is 
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By defining the first-order coefficient vector as 

 T
1 1 1 1[ (0)  (1)  ( 1)]h h h N= −h "  (4) 

and the first-order input vector by 

 T
1( ) [ ( ) ( 1) ( 1)]n x n x n x n N= − − +x "  (5) 

the first right-hand side (RHS) term of (3) can be rewritten 
(in a vector form) as 

 T
1 1 1( ) ( ).y n n= h x  (6) 

Moreover, defining the second-order input vector as 
2
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and the second-order coefficient vector by 
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the second RHS term of (3) becomes 

 T
2 2 2( ) ( ).y n n= h x  (9) 

The second-order coefficient vector can also be represented 
in the form of a matrix, considering the indices of each 
coefficient as row and column coordinates (Cartesian 
coordinates). Thus, for a case with memory size 3,N =  we 
obtain the following coefficient matrix: 
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2.2. Implementations Based on Diagonal Coordinates 
Following the same steps as [8], a diagonal coordinate 
implementation of Volterra filters can be obtained by 
introducing a change of coordinates in (2). For our case 
(second-order Volterra filters), the following change of 
coordinates is introduced in (3): 1m s=  and 2 .m s r= +  
Thus, 

 

1

1
0

1 1

2
0 0

( ) ( ) ( )

         ( , ) ( ) ( ).

N

s
N N s

s r

y n h s x n s

h s s r x n s x n s r

−

=
− − −

= =

= −

+ + − − −

∑

∑ ∑
 (11) 

Note that the first RHS term of (3) remains unchanged in 
(11). On the other hand, the modification in the second 
RHS term allows exchanging the summations to obtain 

 
1 1

2 2
0 0

( ) ( , ) ( ) ( ).
N N r

r s
y n h s s r x n s x n s r

− − −

= =
= + − − −∑ ∑  (12) 

Now, defining a new partial second-order input vector as 

 2,
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and the corresponding coefficient vector by 

 T
2, 2 2 2[ (0, ) (1,1 ) ( 1 , 1)]r h r h r h N r N= + − − −h "  (14) 

(12) can be rewritten as 
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Note that (13) is composed of delayed versions of 
( ) ( ),x n x n r−  whereas (14) is formed by elements of a 

diagonal of the coefficient matrix 2H  [see (10)]. Thus, 
each product T

2, 2, ( ),r r nh u  in (15), corresponds to filtering 
an input signal ( ) ( )x n x n r−  through an FIR filter whose 
coefficients are obtained from one of the diagonals of the 
coefficient matrix. As a consequence, the diagonal 
coordinate implementation of a second-order Volterra filter 
results in a parallel structure of FIR filters, as illustrated in 
Figure 1. 

The main advantage of the diagonal coordinate 
implementation, as compared with the redundancy-
removed, is that some of the branches can be disregarded 
aiming to obtain a structure with reduced complexity. This 
feature is especially interesting in applications in which the 
coefficients of the main diagonals of the kernels are the 
most important ones [4]-[5]. Examples of reduced-
complexity Volterra implementations exploiting this 
characteristic are the simplified Volterra implementation 
[4], in which the last branches of each kernel are 
disregarded, and the power filters [5], in which only the 
main branch (or diagonal) from each kernel is preserved. 

2.3. Sparse-Interpolated Volterra Filters 
Another way for implementing Volterra filters with 
reduced complexity is the sparse-interpolated approach [7]. 
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Such a scheme uses an input interpolator g  cascaded with 
a sparse Volterra filter Vsh  having a reduced number of 
coefficients, which is illustrated in Figure 2. The 
interpolator is a linear FIR filter with memory size M  and 
coefficient vector given by 

 T[ (0) (1)    ( 1)] .g g g M= −g "  (16) 

Thus, the signal in the output of the interpolator is 

 T
M( ) ( )x n n= g x�  (17) 

where T
M ( ) [ ( ) ( 1) ( 1)] .n x n x n x n M= − − +x "  

Additionally, in Figure 2, ˆ( )y n  represents the output 
signal of the sparse-interpolated Volterra filter. The 
memory size of the interpolator is a function of the 
sparseness (or interpolation) factor L  [7]. Then, 

 1 2( 1) 2 1.M L L= + − = −  (18) 

The first-order coefficient vector of Vsh  is obtained by 
setting to zero 1L −  of each L  coefficients in (4) [7]. 
Thus, we have 

 T
1s 1 1 1 s{ (0) 0  ( ) 0  [( 1) ] 0  0}h h L h N L= −h " " "  (19) 

with the corresponding interpolated input vector given by 

 T
1( ) [ ( ) ( 1) ( 1)] .n x n x n x n N= − − +x� � � �"  (20) 

The number of nonzero coefficients in (19) is 

 s ( 1) 1N N L= − +⎢ ⎥⎣ ⎦  (21) 

where ⋅⎢ ⎥⎣ ⎦  represents the truncation operation. For higher 
order kernels, the sparse coefficient vectors are obtained by 
zeroing the coefficients which present at least one index not 
multiple of L  [7]. For instance, the coefficient vector for a 
second-order kernel with memory size 3N =  is  

 T
2s 2 2 2[ (0,0) 0 (0,2) 0 0 (2,2)]h h h=h  (22) 

while the corresponding interpolated input vector is 
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Similarly to (10), (22) can be represented in a matrix form 
as 
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3. DIAGONALLY-INTERPOLATED VOLTERRA 
FILTERS 

As shown in [7], despite the use of sparseness for 
complexity reduction, sparse-interpolated Volterra filters 
exhibit an overall equivalent structure that is not sparse. A 
precondition to obtain such a non-sparse equivalent 
structure is to locate the interpolator at the input of the 

sparse-interpolated Volterra structure [7]. In this way, the 
zeroed coefficients from the main diagonal and upper 
triangular part of (24) are recreated by an interpolation 
process that takes place between coefficients in the same 
diagonal as well as between coefficients from different 
adjacent diagonals, as described in detail in [7]. On the 
other hand, if the interpolator is moved to the output (see 
Figure 3), a sparse equivalent structure is obtained. To 
show such a characteristic, we consider the case of a 
second-order sparse-interpolated Volterra filter with 
memory size 3N =  and sparseness factor 2.L =  By using 
the diagonal coordinate representation to implement the 
sparse Volterra filter, the structure presented in Figure 4 is 
obtained. Due to the sparseness of Vs ,h  the branches of 
such a structure are also sparse. Thus, the coefficient vector 
for the first branch is given by (19) and the coefficient 
vectors for each of the remaining branches are  [see (14)] 

T
2s, 2 2 2[ (0, ) 0 (2,2 ) 0 ( 1 , 1)] .r h r h r h N r N= + − − −h "  

(25) 

Furthermore, one branch 2s,1( ,h  shown by dashed lines in 
Figure 4) is removed from the structure since all its 
coefficients present at least one index not multiple of .L  
Now, moving the interpolator to the left-hand side (LHS) 
of all summations in the structure of Figure 4, one observes 
that the interpolation is performed on each branch and, 
consequently, along the diagonals of the second-order 
coefficient matrix. As a consequence, no interpolation is 
carried out between the coefficients from the adjacent 
branches 2s,0h  and 2s,2h  to recreate 2s,1.h  Thus, the 
diagonal corresponding to 2s,1h  remains zeroed, resulting 
in a sparse equivalent structure for the sparse-interpolated 
Volterra filter with the interpolator at the output. 

To obtain an equivalent structure that is not sparse, we 
need to modify the characteristics of the sparse filter from 
the sparse-interpolated structure using the interpolator at 
the output. Thus, instead of zeroing the coefficients with at 
least one index not multiple of ,L  the coefficients with 
only the first index not multiple of L  have to be set to zero. 
Consequently, none of the branches in the structure of 
Figure 4 is removed, being all of them sparse [coefficient 
vectors given by (25)]. Moreover, to improve the 
performance of the interpolation process, one can move the 
interpolator to the LHS of all summations in the structure 
of Figure 4, and use different sets of coefficients for each 
interpolator of each branch. Thus, the interpolation in any 
branch can be adjusted independently, leading to a more 
efficient interpolation process. The resulting structure, 
termed diagonally-interpolated Volterra filter, is shown in 
Figure 5. It is important to highlight that, despite the input 
nonlinearities, all branches of the structure in Figure 5 are 
composed of a linear sparse FIR filter (memory size N  and 
sparseness factor )L  cascaded with an interpolator with 
memory size 2 1M L= −  [see (18)]. 

The drawback of the structure of Figure 5, as 
compared with those of Figures 2, 3, and 4, is a higher 
computational burden due to its less-sparse nature as well 
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as the use of multiple interpolators. However, in the 
structure of Figure 5, a reduction (truncation) on the 
number of branches can also be easily carried out in a 
similar way as used to obtain both the simplified Volterra 
filters [4] and the power filters [5]. Thus, the computational 
complexity can be considerably reduced in applications in 
which only the main diagonals of the kernels are 
considered. In addition, the diagonally-interpolated 
structure can be scaled up and down by either using or not 
the sparse-interpolated approach in each of the branches. 
For instance, we can set the first two branches (linear and 
main diagonal of the second-order kernel) as standard 
branches and the remaining ones as sparse-interpolated to 
enhance the filter for performance, at the expense of a 
small increase in complexity. Thus, a better trade-off 
between complexity and performance can be achieved. 

... ...

1h

2,0h

2,1h

2,      1N−h

x n( ) y n( )

...

1z−

1z−
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+

+
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Figure 1 – Block diagram of a diagonal coordinate setup of a 
second-order Volterra filter. 

gx n( ) y n( )ˆ
Vshx n( )

 
Figure 2 – Block diagram of a sparse-interpolated Volterra filter. 
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Figure 3 – Block diagram of a sparse-interpolated Volterra filter 
with the interpolator at the output. 
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Figure 4 – Block diagram of a second-order sparse-interpolated 
Volterra filter with the interpolator at the output and 3.N =  
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Figure 5 – Block diagram of a second-order diagonally-
interpolated Volterra filter with memory size 3.N =  

3.1 NLMS Coefficient Updating 
Since the application considered here involves network 
echo cancellation with voice signals, the algorithm chosen 
to update the coefficients of the diagonally-interpolated 
Volterra implementations is the NLMS. This is due to a 
relatively small computational burden of such an algorithm 
as well as its robustness to variations of the input signal 
power. Note that each branch of the diagonally-interpolated 
Volterra structure corresponds to either an interpolated FIR 
(IFIR) filter or the first-order kernel of a sparse-
interpolated Volterra filter [7]. Thereby, one can use the 
algorithm presented in [9] to update the coefficients of the 
interpolator along with a constrained approach, as that 
given in [7], to obtain the algorithm for updating the 
coefficients of the sparse filter. As a result, the update 
expression for the sparse filter of each second-order branch 
is 

 1
2s, 2s, 2,

1 1
( 1) ( ) ( ) ( )r r rn n e n nα
+ = +

β +ψ
h Ph Pu�  (26) 

with 
 ( ) ( ) ( )e n d n y n= −  (27) 

where ( )e n  denotes the error signal, ( )d n  is the signal 
with echo, 1α  is the step-size control parameter, 1,ψ  a 
small positive constant (regularization parameter) used for 
preventing division by zero, and ,P  a projection matrix 
due to the sparseness of 2s,rh  [7]. Moreover, 2, ( )r nu�  is a 
modified version of (13) obtained by using the signal 

( ) ( )x n x n r−  filtered by the interpolator 2, ,rg  and 1,β  a 
normalizing term determined by adding the quadratic 
norms of 2, ( )r nu�  for all considered values of r . On the 
other hand, to update the interpolator coefficients in each 
second-order branch, we have 

 2
2, 2, 2,

2 2
ˆ( 1) ( ) ( ) ( )r r rn n e n nα

+ = +
β +ψ

g g u  (28) 

where 2α  and 2ψ  are similar to 1α  and 1,ψ  respectively, 
and 2,ˆ ( )r nu  is a vector built with M  delayed samples 
obtained from the output of the sparse filter of the thr  
branch. In addition, 2β  is a normalizing term obtained by 
adding the quadratic norms of the vectors 2,ˆ ( )r nu  from all 
branches. The update of the coefficients from the first-order 
branch are carried out similarly to (26) and  (28). 

4. SIMULATION RESULTS 
This section presents numerical simulation results aiming to 
evaluate the use of the diagonally-interpolated Volterra 
approach in a network echo cancellation problem with 
signals obtained from an analog telephone adapter (ATA) 
used in VoIP systems. Preliminary simulation results, 
considering some reduced-complexity Volterra 
implementations, have pointed out a satisfactory 
performance of the simplified Volterra (SV) filter [4] (with 
memory size of 51, a first-order branch and 3 second-order 
branches) as performing echo cancelation with the involved 
signals. In this way, we assess two different 
diagonally-interpolated Volterra (DIV) setups, both 
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presenting memory size of 51: (DIV-A) a DIV filter with a 
standard first-order branch and 3 sparse-interpolated 
second-order branches with 3;L =  and (DIV-B) another 
DIV filter using two standard branches (first-order and 
main second-order ones) and 2 additional second-order 
sparse-interpolated branches using 3.L =  Furthermore, a 
linear FIR filter is also used in the simulations. All filters 
make use of the NLMS algorithm to update the coefficients 
with step-size control parameters 1 2 0.5α = α =  and 
regularization parameters 1 2 0.1.ψ = ψ =  The performance 
comparison is carried out in terms of echo return loss 
enhancement (ERLE), defined (in dB) as [4] 

 
2

10 2
[ ( )]10log
[ ( )]

E d nERLE
E e n

=  (29) 

where ( )d n  is the signal with echo and ( ),e n  the error 
signal. The obtained ERLE curves have been smoothed 
using a moving average filter with memory size 

ma 500.N =  The computational complexity for each of the 
considered filters is shown in Table 1, in terms of 
operations per sample and memory use, while the 
simulation results are presented in Figure 6. From this 
figure, we observe that the less-complex DIV-A 
implementation provides a performance close to that from 
the SV filter (with about 40% less additions, 
multiplications, and memory use), while the DIV-B 
implementation presents nearly the same performance as 
the SV filter (with about 27% less additions and 
multiplications as well as 26% less memory use). In terms 
of subjective audio quality, significant differences have not 
been perceived between the echo-cancelled signals 
obtained using the SV, DIV-A, and DIV-B 
implementations. The obtained results illustrate the 
effectiveness of the proposed approach as well as its 
flexibility for providing implementations with different 
trade-offs between complexity and performance. 

TABLE 1 
COMPLEXITY COMPARISON BETWEEN THE DIFFERENT 
IMPLEMENTATIONS CONSIDERED IN THE SIMULATIONS 

 Additions Multiplications Divisions Memory
FIR 153 154 1 108
SV 600 607 1 412

DIV-A 350 356 2 247
DIV-B 437 443 2 305

5. CONCLUDING REMARKS 
This paper presented a novel approach for implementing 
adaptive Volterra filters with reduced complexity. Such an 
approach is based on using sparseness and interpolation to 
obtain computational savings in adaptive Volterra 
implementations with a reduced number of kernel 
diagonals. Numerical simulation results for a real-world 
network echo cancellation problem are shown, 
corroborating the effectiveness of the proposed approach. 
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Figure 6. ERLE curves obtained from simulations using real-
world network signals of an echo cancellation application. 
(a) First frame. (b) Second frame. 
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