
ADAPTIVE NLMS DIAGONALLY-INTERPOLATED VOLTERRA FILTERS FOR
NETWORK ECHO CANCELLATION

Eduardo L. O. Batista Rui Seara
 Department of Informatics and Statistics Department of Electrical Engineering

LINSE – Circuits and Signal Processing Laboratory
Federal University of Santa Catarina

88040-900 – Florianópolis – SC – Brazil
E-mails: ebatista@inf.ufsc.br, seara@linse.ufsc.br

ABSTRACT

This paper presents a novel approach to implement
adaptive Volterra filters with reduced complexity aiming at
echo cancellation applications. The proposed approach is
based on combining two different strategies in order to
reduce the computational burden of adaptive Volterra
structures, namely shortening the number of kernel
diagonals and using a sparse-interpolated setup. As a
result, an efficient diagonally-interpolated Volterra
implementation is achieved, offering a controllable trade-
off between complexity and performance. Simulation
results considering a real-world network echo cancellation
problem attest the effectiveness of the proposed approach.

1. INTRODUCTION

A usual problem in many telephone systems is the
occurrence of echo signals that, in the case of voice
communications, may significantly interfere in the
conversation flow. Moreover, echoes have an important
impact on the performance of voice over IP (VoIP) [1] and
speech recognition systems [2], which have been
increasingly used over the last few years. In this context,
the use of echo cancellation systems has become essential
to guarantee the quality and reliability of telephone
communications.

A common approach to perform echo cancellation is
the use of linear adaptive filters to model the echo path and
generate an echo replica which is subtracted from the
received signal [3]. However, such an approach often does
not fulfill the performance requirements due to the presence
of nonlinear distortions in the echo path [3]. In these cases,
the use of nonlinear adaptive filters, such as the Volterra
filter, may be necessary to obtain satisfactory performance
[3].

Volterra filters have been used successfully in network
and acoustic echo cancellation schemes [4]-[6]. In general,
these schemes use reduced-complexity Volterra
implementations due to the high computational
requirements of the standard Volterra filters [4]-[6]. A
usual strategy for obtaining such reduced-complexity
implementations is to discard from the standard Volterra
filter either non-dominant kernels or kernel diagonals [4]-
[5]. The drawback of the resulting sparse approaches is that
no mechanism is adopted to offset the loss of performance
that arises from discarding entire kernels or parts of them.

In this framework, sparse-interpolated implementations [7]
may be of interest since they use an interpolation scheme to
compensate for the loss of performance arising from the
strictly-sparse approaches. Thereby, sparse-interpolated
structures bear an equivalent non-sparse characteristic
despite using sparseness for complexity reduction [7].

In this paper, a novel strategy to efficiently implement
adaptive Volterra filters is proposed. The central idea here
is to develop a sparse-interpolated scheme which allows the
implementation of Volterra structures presenting a reduced
number of kernel diagonals, such as the simplified Volterra
filters [4] and the power filters [5]. Thus, the computational
burden is reduced by shortening the number of diagonals as
well as by using both sparseness and interpolation. As a
result, a scalable structure termed diagonally-interpolated
Volterra filter is achieved. Such an approach leads to a
structure of filtering with a changeable trade-off between
complexity and performance. Simulation results
considering a network echo cancellation problem with
signals from a real-world application are presented aiming
to verify the effectiveness of the proposed approach.

This paper is organized as follows. Section 2 describes
the basics of Volterra filtering, the diagonal coordinate
implementation and the sparse-interpolated approach. In
Section 3, the diagonally-interpolated Volterra approach is
discussed as well as the update of its coefficients by using
an adaptive normalized least-mean-square (NLMS)
algorithm. Section 4 presents the simulation results.
Finally, in Section 5, concluding remarks are presented.

2. BACKGROUND ON STANDARD, DIAGONAL
COORDINATE AND SPARSE-INTERPOLATED

VOLTERRA FILTERS

In this section, we briefly review the standard Volterra
filter as well as its implementations based on exploiting the
diagonal coordinate representation and sparse-interpolated
structures.

2.1. Standard Volterra Filter
As described in [3], the input-output relationship of the
Volterra filter can be written as the sum of the outputs of
kernels with distinct orders. Thus,

1

() ()
P

p
p

y n y n
=

= ∑ (1)

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 1430

with ()y n denoting the output signal, ,P the filter order,
and (),py n the output of each kernel, which is given by

1 2 1 1

1 1 1

1 2
0 1

() (, , ,) ()
p p

pN N N

p p p k
m m m m m k

y n h m m m x n m
−

− − −

= = = =
= × −∑ ∑ ∑ ∏" …

(2)

where ()x n denotes the input signal, ,N the memory size,
and 1 2(, , ,),p ph m m m… the th-orderp filter coefficients. It
is important to highlight that (2) corresponds to both the
triangular [3] and redundancy-removed [7] Volterra
implementations, which are obtained removing the
redundant kernel coefficients with no loss of generality. In
this work, the focus is on second-order Volterra
implementations due to the characteristics of the
application used. For this case, the input-output relationship
obtained from (1) and (2) is

 1

1 2 1

1

1 1 1
0

1 1

2 1 2 1 2
0

() () ()

 (,) () ().

N

m

N N

m m m

y n h m x n m

h m m x n m x n m

−

=

− −

= =

= −

+ − −

∑

∑ ∑
 (3)

By defining the first-order coefficient vector as

 T
1 1 1 1[(0) (1) (1)]h h h N= −h " (4)

and the first-order input vector by

 T
1() [() (1) (1)]n x n x n x n N= − − +x " (5)

the first right-hand side (RHS) term of (3) can be rewritten
(in a vector form) as

 T
1 1 1() ().y n n= h x (6)

Moreover, defining the second-order input vector as
2

2
2 2 T

() [() () (1) () (1)
(1) (1) (2) (1)]

n x n x n x n x n x n N
x n x n x n x n N

= − − +
− − − − +

x "
"

(7)

and the second-order coefficient vector by

 2 2 2 2
T

2 2 2

[(0,0) (0,1) (0, 1)
(1,1) (1,2) (1, 1)]

h h h N
h h h N N

= −
− −

h "
" (8)

the second RHS term of (3) becomes

 T
2 2 2() ().y n n= h x (9)

The second-order coefficient vector can also be represented
in the form of a matrix, considering the indices of each
coefficient as row and column coordinates (Cartesian
coordinates). Thus, for a case with memory size 3,N = we
obtain the following coefficient matrix:

2 2 2

2 2 2

2

(0,0) (0,1) (0,2)
0 (1,1) (1,2) .
0 0 (2,2)

h h h
h h

h

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H (10)

2.2. Implementations Based on Diagonal Coordinates
Following the same steps as [8], a diagonal coordinate
implementation of Volterra filters can be obtained by
introducing a change of coordinates in (2). For our case
(second-order Volterra filters), the following change of
coordinates is introduced in (3): 1m s= and 2 .m s r= +
Thus,

1

1
0

1 1

2
0 0

() () ()

 (,) () ().

N

s
N N s

s r

y n h s x n s

h s s r x n s x n s r

−

=
− − −

= =

= −

+ + − − −

∑

∑ ∑
 (11)

Note that the first RHS term of (3) remains unchanged in
(11). On the other hand, the modification in the second
RHS term allows exchanging the summations to obtain

1 1

2 2
0 0

() (,) () ().
N N r

r s
y n h s s r x n s x n s r

− − −

= =
= + − − −∑ ∑ (12)

Now, defining a new partial second-order input vector as

 2,
T

() [() () (1) (1)

 (1) (1)]
r n x n x n r x n x n r

x n N r x n N

= − − − −

− + + − +

u "
 (13)

and the corresponding coefficient vector by

 T
2, 2 2 2[(0,) (1,1) (1 , 1)]r h r h r h N r N= + − − −h " (14)

(12) can be rewritten as

1

T
2 2, 2,

0
() ().

N

r r
r

y n n
−

=
= ∑ h u (15)

Note that (13) is composed of delayed versions of
() (),x n x n r− whereas (14) is formed by elements of a

diagonal of the coefficient matrix 2H [see (10)]. Thus,
each product T

2, 2, (),r r nh u in (15), corresponds to filtering
an input signal () ()x n x n r− through an FIR filter whose
coefficients are obtained from one of the diagonals of the
coefficient matrix. As a consequence, the diagonal
coordinate implementation of a second-order Volterra filter
results in a parallel structure of FIR filters, as illustrated in
Figure 1.

The main advantage of the diagonal coordinate
implementation, as compared with the redundancy-
removed, is that some of the branches can be disregarded
aiming to obtain a structure with reduced complexity. This
feature is especially interesting in applications in which the
coefficients of the main diagonals of the kernels are the
most important ones [4]-[5]. Examples of reduced-
complexity Volterra implementations exploiting this
characteristic are the simplified Volterra implementation
[4], in which the last branches of each kernel are
disregarded, and the power filters [5], in which only the
main branch (or diagonal) from each kernel is preserved.

2.3. Sparse-Interpolated Volterra Filters
Another way for implementing Volterra filters with
reduced complexity is the sparse-interpolated approach [7].

1431

Such a scheme uses an input interpolator g cascaded with
a sparse Volterra filter Vsh having a reduced number of
coefficients, which is illustrated in Figure 2. The
interpolator is a linear FIR filter with memory size M and
coefficient vector given by

 T[(0) (1) (1)] .g g g M= −g " (16)

Thus, the signal in the output of the interpolator is

 T
M() ()x n n= g x� (17)

where T
M () [() (1) (1)] .n x n x n x n M= − − +x "

Additionally, in Figure 2, ˆ()y n represents the output
signal of the sparse-interpolated Volterra filter. The
memory size of the interpolator is a function of the
sparseness (or interpolation) factor L [7]. Then,

 1 2(1) 2 1.M L L= + − = − (18)

The first-order coefficient vector of Vsh is obtained by
setting to zero 1L − of each L coefficients in (4) [7].
Thus, we have

 T
1s 1 1 1 s{ (0) 0 () 0 [(1)] 0 0}h h L h N L= −h " " " (19)

with the corresponding interpolated input vector given by

 T
1() [() (1) (1)] .n x n x n x n N= − − +x� � � �" (20)

The number of nonzero coefficients in (19) is

 s (1) 1N N L= − +⎢ ⎥⎣ ⎦ (21)

where ⋅⎢ ⎥⎣ ⎦ represents the truncation operation. For higher
order kernels, the sparse coefficient vectors are obtained by
zeroing the coefficients which present at least one index not
multiple of L [7]. For instance, the coefficient vector for a
second-order kernel with memory size 3N = is

 T
2s 2 2 2[(0,0) 0 (0,2) 0 0 (2,2)]h h h=h (22)

while the corresponding interpolated input vector is

2

2
2 2 T

() [() () (1) () (2)
(1) (1) (2) (2)] .

n x n x n x n x n x n
x n x n x n x n

= − −
− − − −

x� � � � � �
� � � �

 (23)

Similarly to (10), (22) can be represented in a matrix form
as

2 2

2s

2

(0,0) 0 (0,2)
0 0 0 .
0 0 (2,2)

h h

h

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H (24)

3. DIAGONALLY-INTERPOLATED VOLTERRA
FILTERS

As shown in [7], despite the use of sparseness for
complexity reduction, sparse-interpolated Volterra filters
exhibit an overall equivalent structure that is not sparse. A
precondition to obtain such a non-sparse equivalent
structure is to locate the interpolator at the input of the

sparse-interpolated Volterra structure [7]. In this way, the
zeroed coefficients from the main diagonal and upper
triangular part of (24) are recreated by an interpolation
process that takes place between coefficients in the same
diagonal as well as between coefficients from different
adjacent diagonals, as described in detail in [7]. On the
other hand, if the interpolator is moved to the output (see
Figure 3), a sparse equivalent structure is obtained. To
show such a characteristic, we consider the case of a
second-order sparse-interpolated Volterra filter with
memory size 3N = and sparseness factor 2.L = By using
the diagonal coordinate representation to implement the
sparse Volterra filter, the structure presented in Figure 4 is
obtained. Due to the sparseness of Vs ,h the branches of
such a structure are also sparse. Thus, the coefficient vector
for the first branch is given by (19) and the coefficient
vectors for each of the remaining branches are [see (14)]

T
2s, 2 2 2[(0,) 0 (2,2) 0 (1 , 1)] .r h r h r h N r N= + − − −h "

(25)

Furthermore, one branch 2s,1(,h shown by dashed lines in
Figure 4) is removed from the structure since all its
coefficients present at least one index not multiple of .L
Now, moving the interpolator to the left-hand side (LHS)
of all summations in the structure of Figure 4, one observes
that the interpolation is performed on each branch and,
consequently, along the diagonals of the second-order
coefficient matrix. As a consequence, no interpolation is
carried out between the coefficients from the adjacent
branches 2s,0h and 2s,2h to recreate 2s,1.h Thus, the
diagonal corresponding to 2s,1h remains zeroed, resulting
in a sparse equivalent structure for the sparse-interpolated
Volterra filter with the interpolator at the output.

To obtain an equivalent structure that is not sparse, we
need to modify the characteristics of the sparse filter from
the sparse-interpolated structure using the interpolator at
the output. Thus, instead of zeroing the coefficients with at
least one index not multiple of ,L the coefficients with
only the first index not multiple of L have to be set to zero.
Consequently, none of the branches in the structure of
Figure 4 is removed, being all of them sparse [coefficient
vectors given by (25)]. Moreover, to improve the
performance of the interpolation process, one can move the
interpolator to the LHS of all summations in the structure
of Figure 4, and use different sets of coefficients for each
interpolator of each branch. Thus, the interpolation in any
branch can be adjusted independently, leading to a more
efficient interpolation process. The resulting structure,
termed diagonally-interpolated Volterra filter, is shown in
Figure 5. It is important to highlight that, despite the input
nonlinearities, all branches of the structure in Figure 5 are
composed of a linear sparse FIR filter (memory size N and
sparseness factor)L cascaded with an interpolator with
memory size 2 1M L= − [see (18)].

The drawback of the structure of Figure 5, as
compared with those of Figures 2, 3, and 4, is a higher
computational burden due to its less-sparse nature as well

1432

as the use of multiple interpolators. However, in the
structure of Figure 5, a reduction (truncation) on the
number of branches can also be easily carried out in a
similar way as used to obtain both the simplified Volterra
filters [4] and the power filters [5]. Thus, the computational
complexity can be considerably reduced in applications in
which only the main diagonals of the kernels are
considered. In addition, the diagonally-interpolated
structure can be scaled up and down by either using or not
the sparse-interpolated approach in each of the branches.
For instance, we can set the first two branches (linear and
main diagonal of the second-order kernel) as standard
branches and the remaining ones as sparse-interpolated to
enhance the filter for performance, at the expense of a
small increase in complexity. Thus, a better trade-off
between complexity and performance can be achieved.

... ...

1h

2,0h

2,1h

2, 1N−h

x n() y n()

...

1z−

1z−
...

+

+

+×

×

×

Figure 1 – Block diagram of a diagonal coordinate setup of a
second-order Volterra filter.

gx n() y n()ˆ
Vshx n()

Figure 2 – Block diagram of a sparse-interpolated Volterra filter.

gx n() y n()ˆ
Vsh x n()ˆ

Figure 3 – Block diagram of a sparse-interpolated Volterra filter
with the interpolator at the output.

1sh

2s,0h

2s,1h

2s,2h

x n() y n()

1z−

1z−

+

+

+×

×

×

ˆ gx n()

Figure 4 – Block diagram of a second-order sparse-interpolated
Volterra filter with the interpolator at the output and 3.N =

1sh

2s,0h

2s,1h

2s,2h

x n()

1z−

1z−

+

+

+×

×

×

y n()
1g

2,0g

2,1g

2,2g

Figure 5 – Block diagram of a second-order diagonally-
interpolated Volterra filter with memory size 3.N =

3.1 NLMS Coefficient Updating
Since the application considered here involves network
echo cancellation with voice signals, the algorithm chosen
to update the coefficients of the diagonally-interpolated
Volterra implementations is the NLMS. This is due to a
relatively small computational burden of such an algorithm
as well as its robustness to variations of the input signal
power. Note that each branch of the diagonally-interpolated
Volterra structure corresponds to either an interpolated FIR
(IFIR) filter or the first-order kernel of a sparse-
interpolated Volterra filter [7]. Thereby, one can use the
algorithm presented in [9] to update the coefficients of the
interpolator along with a constrained approach, as that
given in [7], to obtain the algorithm for updating the
coefficients of the sparse filter. As a result, the update
expression for the sparse filter of each second-order branch
is

 1
2s, 2s, 2,

1 1
(1) () () ()r r rn n e n nα
+ = +

β +ψ
h Ph Pu� (26)

with
 () () ()e n d n y n= − (27)

where ()e n denotes the error signal, ()d n is the signal
with echo, 1α is the step-size control parameter, 1,ψ a
small positive constant (regularization parameter) used for
preventing division by zero, and ,P a projection matrix
due to the sparseness of 2s,rh [7]. Moreover, 2, ()r nu� is a
modified version of (13) obtained by using the signal

() ()x n x n r− filtered by the interpolator 2, ,rg and 1,β a
normalizing term determined by adding the quadratic
norms of 2, ()r nu� for all considered values of r . On the
other hand, to update the interpolator coefficients in each
second-order branch, we have

 2
2, 2, 2,

2 2
ˆ(1) () () ()r r rn n e n nα

+ = +
β +ψ

g g u (28)

where 2α and 2ψ are similar to 1α and 1,ψ respectively,
and 2,ˆ ()r nu is a vector built with M delayed samples
obtained from the output of the sparse filter of the thr
branch. In addition, 2β is a normalizing term obtained by
adding the quadratic norms of the vectors 2,ˆ ()r nu from all
branches. The update of the coefficients from the first-order
branch are carried out similarly to (26) and (28).

4. SIMULATION RESULTS
This section presents numerical simulation results aiming to
evaluate the use of the diagonally-interpolated Volterra
approach in a network echo cancellation problem with
signals obtained from an analog telephone adapter (ATA)
used in VoIP systems. Preliminary simulation results,
considering some reduced-complexity Volterra
implementations, have pointed out a satisfactory
performance of the simplified Volterra (SV) filter [4] (with
memory size of 51, a first-order branch and 3 second-order
branches) as performing echo cancelation with the involved
signals. In this way, we assess two different
diagonally-interpolated Volterra (DIV) setups, both

1433

presenting memory size of 51: (DIV-A) a DIV filter with a
standard first-order branch and 3 sparse-interpolated
second-order branches with 3;L = and (DIV-B) another
DIV filter using two standard branches (first-order and
main second-order ones) and 2 additional second-order
sparse-interpolated branches using 3.L = Furthermore, a
linear FIR filter is also used in the simulations. All filters
make use of the NLMS algorithm to update the coefficients
with step-size control parameters 1 2 0.5α = α = and
regularization parameters 1 2 0.1.ψ = ψ = The performance
comparison is carried out in terms of echo return loss
enhancement (ERLE), defined (in dB) as [4]

2

10 2
[()]10log
[()]

E d nERLE
E e n

= (29)

where ()d n is the signal with echo and (),e n the error
signal. The obtained ERLE curves have been smoothed
using a moving average filter with memory size

ma 500.N = The computational complexity for each of the
considered filters is shown in Table 1, in terms of
operations per sample and memory use, while the
simulation results are presented in Figure 6. From this
figure, we observe that the less-complex DIV-A
implementation provides a performance close to that from
the SV filter (with about 40% less additions,
multiplications, and memory use), while the DIV-B
implementation presents nearly the same performance as
the SV filter (with about 27% less additions and
multiplications as well as 26% less memory use). In terms
of subjective audio quality, significant differences have not
been perceived between the echo-cancelled signals
obtained using the SV, DIV-A, and DIV-B
implementations. The obtained results illustrate the
effectiveness of the proposed approach as well as its
flexibility for providing implementations with different
trade-offs between complexity and performance.

TABLE 1
COMPLEXITY COMPARISON BETWEEN THE DIFFERENT
IMPLEMENTATIONS CONSIDERED IN THE SIMULATIONS

 Additions Multiplications Divisions Memory
FIR 153 154 1 108
SV 600 607 1 412

DIV-A 350 356 2 247
DIV-B 437 443 2 305

5. CONCLUDING REMARKS
This paper presented a novel approach for implementing
adaptive Volterra filters with reduced complexity. Such an
approach is based on using sparseness and interpolation to
obtain computational savings in adaptive Volterra
implementations with a reduced number of kernel
diagonals. Numerical simulation results for a real-world
network echo cancellation problem are shown,
corroborating the effectiveness of the proposed approach.

6. ACKNOWLEDGMENT
The authors would like to thank the National Council for
Scientific and Technological Development (CNPq) for the
financial support of this work.

FIR
SV
DIV-A
DIV-B

0

5

10

15

20

25

30

0 10500 21000

Samples, n

ER
LE

 (d
B)

(a)

FIR
SV
DIV-A
DIV-B

21000 31500 42000

Samples, n

0

5

10

15

20

25

30

ER
LE

 (d
B

)

(b)

Figure 6. ERLE curves obtained from simulations using real-
world network signals of an echo cancellation application.
(a) First frame. (b) Second frame.

7. REFERENCES
[1] J. H. James, B. Chen, and L. Garrison, “Implementing VoIP: a

voice transmission performance progress report,” IEEE
Commun. Mag., vol. 42, no. 7, pp. 36-41, July 2004.

[2] X. Huang, A. Acero, and H. W. Hon, Spoken Language
Processing: A Guide to Theory, Algorithm and System
Development. Upper Saddle River, NJ: Prentice-Hall, 2001.

[3] V. J. Mathews and G. L. Sicuranza, Polynomial Signal
Processing. New York: John Wiley & Sons Inc., 2000.

[4] A. Fermo, A. Carini, and G. L. Sicuranza, “Low-complexity
nonlinear adaptive filters for acoustic echo cancellation in
GSM handset receivers,” Eur. Trans. Telecommun., vol. 14,
no. 2, pp. 161-169, Mar./Apr. 2003.

[5] F. Kuech, A. Mitnacht, and W. Kellermann, “Nonlinear
acoustic echo cancellation using adaptive orthogonalized
power filters,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), Philadelphia, PA, Mar. 2005,
vol. 3, pp. 105-108.

[6] A. Guerin, G. Faucon, and R. Le Bouquin-Jeannes,
“Nonlinear acoustic echo cancellation based on Volterra
filters,” IEEE Trans. Speech Audio Process., vol. 11, no. 6,
pp.672-684, Nov. 2003.

[7] E. L. O. Batista, O. J. Tobias, and R. Seara, “A sparse-
interpolated scheme for implementing adaptive Volterra
filters,” IEEE Trans. Signal Process., vol. 58, no. 4,
pp. 2022-2035, Apr. 2010.

[8] G. V. Raz and B. V. Veen, “Baseband Volterra filters for
implementing carrier based nonlinearities,” IEEE Trans.
Signal Process., vol. 46, no. 1, pp.103-114, Jan. 1998.

[9] E. L. O. Batista, O. J. Tobias, and R. Seara, “New insights in
adaptive cascaded FIR structure: application to fully adaptive
interpolated FIR structures,” in Proc. Eur. Signal Process.
Conf. (EUSIPCO), Poznan, Poland, Sep. 2007, pp. 370-374.

1434

