
TOWARD A PRACTICAL IMPLEMENTATION OF EXEMPLAR-BASED NOISE
ROBUST ASR

Jort F. Gemmeke1, Antti Hurmalainen2, Tuomas Virtanen2, Yang Sun1

1Department of Linguistics, Radboud University, Nijmegen, The Netherlands.
2Department of Signal Processing, Tampere University of Technology, Finland.

jgemmeke@amadana.nl antti.hurmalainen@tut.fi tuomas.virtanen@tut.fi y.sun@let.ru.nl

ABSTRACT

In previous work it was shown that, at least in principle, an
exemplar-based approach to noise robust ASR is possible.
The method, sparse representation based classification (SC),
works by modelling noisy speech as a sparse linear combi-
nation of speech and noise exemplars. After recovering the
sparsest possible linear combination of labelled exemplars,
noise robust posterior likelihoods are estimated by using the
weights of the exemplars as evidence of the state labels un-
derlying exemplars. Although promising recognition accu-
racies at low SNRs were obtained, the method was imprac-
tical due to its slow execution speed. Moreover, the perfor-
mance was not as good on noisy speech corrupted by noise
types not represented by the noise exemplars. The impor-
tance of sparsity was poorly understood, and the influence of
the size of the exemplar-dictionary was unclear. In this pa-
per we investigate all these issues, and we show for example
that speedups of a factor 28 can be obtained by using modern
GPUs, bringing its execution speed within range to practical
applications.

1. INTRODUCTION

For the last 30 years Automatic Speech Recognition (ASR)
has been completely dominated by the use of HiddenMarkov
Models (HMMs). HMM-based ASR performance, however,
degrades substantially when speech is corrupted by back-
ground noise not seen during training. Additionally, it has
become clear that not all speech phenomena can be covered
in the form of HMMs. There is a general agreement in the
speech community about the need for novel approaches for
handling phenomena that HMMs do not account for (cf. [1]
and the references therein).

In [2] a new approach to noise robust speech recognition
was introduced. The approach, dubbed sparse classification
(SC), is an exemplar-based approach based on the idea that
speech signals can be represented as a sparse, non-negative
linear combination of a small set of suitably selected exem-
plars. First the linear combination is recovered by finding the
smallest number of labelled exemplars in a very large collec-
tion of exemplars (a dictionary) that jointly approximates the
observed speech signal. After obtaining the sparse represen-
tation, the weights of the linear combination of exemplars
are used together with their associated (HMM-state) labels
to provide state likelihoods, after which recognition is done
using Viterbi decoding. It was proposed to make SC noise
robust by modelling noisy speech as a linear combination of
speech and noise exemplars. It was shown that promising ac-
curacies at low SNRs can be reached, especially for matched
noise types. In [3] refinements to SC were proposed that im-
proved performance at high SNRs.

In this paper, we address important issues that stand in

the way of a practical implementation of SC. The first issue is
computational complexity: Due to its exemplar-based nature
and the need to find a sparse linear combination, SC is too
slow for practical applications. The method, however, lends
itself well to parallelisation due to its reliance on linear alge-
bra operations on large matrices. It has been shown that mod-
ern hardware, such as Graphics Processing Units (GPUs) can
dramatically accelerate linear algebra calculations [4]. One
drawback however, is that most of these speedups can only
be obtained when using single precision floating point vari-
ables, rather than double precision variables. In this work,
we investigate if there is an impact of using single precision
floating point variables, and what kind of speedups can be
obtained when using GPUs to accelerate SC.

The second issue is the sensitivity to the choice of noise
dictionary. Previous research has shown that while SC
achieves impressive noise robustness when the noise types of
the available noise exemplars correspond to the noise types
encountered in the noisy speech, the method does not gener-
alise as well to unseen noise types. In [5], it was proposed
to use artificial noise exemplars to cover such unseen noises,
and it was shown an artificial noise dictionary achieves better
noise robustness on unseen noise types. In this paper, we ex-
plore to what extend the good performance on both seen and
unseen noise types can be retained when the the two noise
exemplar types are combined in one system.

Third, the SC method relies on finding a sparse linear
combination of exemplars. While experiments revealed that
the use of a sparsity-inducing penalty in the cost function
that is minimised to obtain a sparse representation is benefi-
cial, the relation between sparsity and recognition accuracy
remained unclear. In this work, we investigate the influence
of sparsity in more detail. Finally, there is the issue of choos-
ing the size of the speech exemplar dictionary. In previous
works [2, 3] only a single dictionary size was used, although
it was stated that larger dictionary sizes could improve recog-
nition accuracy. In this work, we explore to what extend
the recognition accuracy is dependent on the dictionary size,
both in clean conditions and in noisy conditions.

2. SPARSE CLASSIFICATION

2.1 Sparse representation of noisy speech

In ASR, speech signals are represented by their spectro-
temporal distribution of acoustic energy, a spectrogram. The
magnitude spectrogram describing a clean speech segment S
is a B×T dimensional matrix (with B frequency bands and
T time frames). To simplify the notation, the columns of this
matrix are stacked into a single vector s of length D= B ·T .

We assume that an observed speech segment can be ex-
pressed as a sparse, linear, non-negative combination of clean
speech exemplars asj, with j= 1, . . . ,J denoting the exemplar

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011  -  ISSN 2076-1465 1490



index. We model noise spectrograms as a linear combination
of noise exemplars ank , with k = 1, . . . ,K being the noise ex-
emplar index. This leads to representing noisy speech y as a
linear combination of both speech and noise exemplars:

y ≈ s+n (1)

≈
J

∑
j=1

xsja
s
j+

K

∑
k=1

xnka
n
k (2)

= [AsAn]

[

xs

xn

]

(3)

=Ax s.t. xs
,xn

,x≥ 0 (4)

with xs and xn sparse representations of the underlying
speech and noise, respectively. In order to obtain x, we min-
imise the cost function:

d(y,Ax)+ ||λ .∗x||1 s.t., x≥ 0 (5)

with as distance function d the generalised Kullback-Leibler
(KL) divergence and with the second term a sparsity inducing
L-1 norm of the activation vector weighted by element-wise
multiplication (operator .∗) with vector λ = [λ1 λ2 . . .λL].
The cost function (5) is minimised using a multiplicative up-
dates routine as in [2].

2.2 Noise robust likelihoods

In order to decode utterances of arbitrary lengths, we adopt
a sliding time window approach as in [2]. In this approach,
we represent a noisy utterance as W fixed-size, overlapping
speech segments. For each segment, we calculate a sparse
representation as described above. With each frame within
each exemplar in the speech dictionary labelled using HMM-
state labels obtained from a conventional MFCC-based de-
coder, the weights of the exemplars in the sparse representa-
tion are directly used to calculate posterior state likelihoods
for that segment using the method described in [3]. We ob-
tain a likelihood matrix for the entire utterance by averaging
the likelihoods of the frames of all the segments that overlap,
and decode the speech utterance by using a Viterbi search for
the state sequences which maximise likelihood.

3. EXPERIMENTAL SETUP

For our recognition experiments we used material from test
sets ‘A’ and ‘B’ of the AURORA-2 corpus. Test set A com-
prises 1 clean and 24 noisy subsets, containing four noise
types (subway, car, babble, exhibition hall). For testing we
used these same random, representative subset of 10% of the
utterances (i.e. 400 utterances per SNR level) used in [2].
In the results, only three SNR values, 5 and −5 dB as well
as clean speech, are shown to improve the clarity of the re-
sults. Test set B contains four different noise types (restau-
rant, street, airport, train station). In the experiments, the
results of the four noise types are averaged. Each subset con-
tains 1001 utterances with one to seven digits ‘0-9’ or ‘oh’.
Acoustic feature vectors consisted of mel frequency mag-
nitude spectrograms, spanning T = 23 bands with a frame
length of 25 ms and a frame shift of 10 ms.

The speech and noise dictionaries were created in a two-
step procedure which is repeated for each exemplar size
T ∈ {20,30}. First, from each noisy utterance in the multi-
condition AURORA-2 training set two segments were ran-
domly selected. The segments were allowed to overlap and

no effort was made to exclude silence frames from the exem-
plars. For these segments the underlying clean speech and
noise originally used for creating the noisy speech were ex-
tracted from their respective spectrograms and added to the
speech and noise dictionaries. This resulted in initial speech
and noise dictionaries consisting of 16880 exemplars. Unless
stated otherwise, the speech and noise dictionaries consisted
of 4000 exemplars randomly chosen from the initial speech
and noise dictionaries. The multi-condition training set of
AURORA-2 contains the same noise types as test set A.

Digits were described by 16 states with an additional 3-
state silence word, resulting in a 179 dimensional state-space.
The speech decoding system was implemented in MATLAB;
we refer the reader to [3] for details. The machine used for
the experiments was a Core 2 Duo E6750 2.4 GHz, with 4
GB of RAM. It was equipped with a 1GB GTX460 GPU and
operated under Windows 7, 64-bit with Matlab2010b.

4. EXPERIMENTS AND RESULTS

4.1 GPU-based acceleration

Modern multi-core hardware, such as GPUs, can dramati-
cally improve the speed at which linear algebra calculations
are carried out (e.g. [4] and the references therein). Up un-
til quite recently, however, writing programs which utilise
the GPU was a difficult and time-consuming task. Now, a
number of software packages exist for high-level languages
such as MATLAB which enable the programmer to quickly
develop programs which can be accelerated by the GPU. In
this paper we use one of these packages, the freeware MAT-
LAB toolbox GPUmat [6]. This toolbox allows GPU-based
calculation simply by first initialising the variables used in a
calculation for use on the GPU, after which calculation of the
involved variables is automatically carried out on the GPU
without further modification of the MATLAB code.

The GPU based acceleration is most effective when us-
ing single precision variables. In this first experiment, we
investigate whether the use of single precision floating point
variables has a significant impact on the accuracies obtained
with SC. We test this by replacing the multiplicative update
routine which solves (5) by a function which first converts
the dictionary and speech segments to single precision for
use on the GPU. It then finds the sparse representation using
the GPU and finally converts the resulting sparse representa-
tion vector x back to double precision for the calculation of
noise robust likelihoods on the CPU.

In Table 1 we show the results using test set A. From the
results we can observe that there is no significant (assuming
a binomial random variable and a 95 % confidence interval)
impact on recognition accuracy from using single precision
GPU-based calculations. To characterise the computational
effort needed, we did timing experiments using the utterance
‘MIP 68385A’, taken from test set A, subway noise type,
SNR -5 dB, which has a length of 182 frames (1.82 seconds
of speech). The time spent on transferring data from and to
the GPU (a costly operation) is included in the timings. As
the running time of the minimisation of cost function (5) is
data-independent, averaging over repeated runs on the same
file is representative for the complete dataset.

It can be inferred from the results in Table 2 that us-
ing the GPU results in a speedup of a factor 24 and 28 for
T = 20 and T = 30, respectively. The fact that larger exem-
plar sizes (containing slightly less segments which need to be
processed but more variables per segment) achieve a larger
speedup, is mostly due to the fact multiplications of large

1491



Table 1: Comparison of word recognition accuracy between
GPU and CPU. The results pertain test set A.

SNR [dB] clean 5 -5

T=20
CPU 96.8 88.7 51.9
GPU 96.8 88.7 51.9

T=30
CPU 94.6 89.9 57.3
GPU 94.6 89.9 57.2

Table 2: Average running times of a single utterance for dif-
ferent exemplar sizes. The ‘solver’ column depicts the time
spent on minimising update rule (5).

CPU GPU
W solver [s] total [s] solver [s] total [s]

T=20 163 65.2 65.4 2.6 2.7
T=30 153 92.1 92.2 3.3 3.4

matrices can be parallelised better and thus larger speedups
on a GPU. Additionally, there is the relative cost of trans-
ferring data to and from the GPU. It is therefore expected
that even larger speedups can be obtained by processing sev-
eral utterances at once if the utterances are short, but also by
doing (part of) the likelihood calculation on the GPU. Es-
pecially considering that the employed GPU can be consid-
ered a ‘mainstream’ model, the obtained speedups show real-
time processing using SC-based methods is now well within
reach. We will use the GPU-based solver in the remainder of
the experiments.

4.2 Combination of noise dictionaries

In [5], it was proposed to use artificial noise exemplars rather
than ‘real’ noise exemplars extracted from a noise database
in order to provide robustness against unseen noise types.
In that work, a very simple form of artificial exemplars was
proposed: the use of B = 23 exemplars that each have one
non-zero, constant frequency band. It was shown that using
these already improves the accuracy on unseen noise types.
At the same time, the artificial exemplars are not as noise
robust as real exemplars if the noise types match.

In realistic applications, it can be assumed that there is a
rough idea about the noise types that can be expected in the
observed noisy speech, while at the same time the speech
recogniser should be as robust as possible against unseen
noises. In this work, we mimic this scenario and explore
whether the two forms of noise dictionaries - real and artifi-
cial - can be effectively combined.

In Table 3, the results are shown for the use of only real,
only artificial and both types (“combined”) of noise exem-
plars. Test set A contains the same noise types as those in the
real noise exemplar dictionary (matched test set) while test
set B contains unseen noise types (mismatched test set). As
was observed in [5], the use of the artificial noise exemplars
leads to a lower performance on the matched test set when
using T = 30 but better on the mismatched test set. When
using T = 20, the use of the artificial noise dictionary de-
grades the results in all noisy conditions.

When combining the two noise dictionaries (keeping all
other parameter settings unchanged), the results on the mis-
matched test set improve for both the real and the artificial
noise dictionaries, also for T = 20. On the matched test set,
the use of the combined system still results in a small perfor-
mance degradation, although far less than when using artifi-

Table 3: Comparison of noise exemplar types. Recogni-
tion accuracies for two exemplar sizes, T=20 and T=30 are
shown, both in test set A and test set B. The rows labelled
‘real’ and ‘artificial’ refer to the two types of noise exem-
plars, with the ‘combined’ system employing both.

test set A test set B
SNR [dB] clean 5 -5 5 -5

T=20
real 96.8 88.7 51.9 82.4 33.8

artificial 96.8 76.8 26.7 76.6 30.5
combined 96.9 87.0 47.2 89.3 53.2

T=30
real 94.6 89.9 57.2 84.8 37.8

artificial 95.3 84.9 39.2 86.5 45.3
combined 94.6 89.3 53.2 88.5 49.3

cial noise exemplars.
The reason for the improvement of the combined sys-

tem over the purely artificial exemplars on the mismatched
dataset can be found in the way silence states are treated in
the system. As explained in [3], the silence states do not
get activated during silence because an absence of speech
energy is modelled as all-zeros sparse representation. As a
work-around, silence states are activated based on the bal-
ance between noise and speech exemplar activations. The
hyper-parameters governing this process are guided by an
SNR estimator, which is also based on the balance between
noise and speech exemplar activations. Preliminary investi-
gations seem to indicate that it is this SNR estimation that is
no longer adequately tuned when using an artificial noise dic-
tionaries. With the addition of the real exemplars, the SNR
estimation works properly again, leading to improvements
over the individual systems.

From these results we can conclude that exemplar noise
dictionaries can be combined to achieve robustness against
both known and unseen noise types, although the way silence
states are treated should be modified to become less depen-
dent on the choice of noise dictionary. One possible way to
do this is by using an separate SNR estimator that works di-
rectly on the noisy speech.

4.3 The importance of sparsity

As the name implies, Sparse Classification (SC) relies on
finding a sparse linear combination of exemplars. In [2] it
was stated that sparsity for speech was important because
it avoids over-fitting of the representation x and forces the
exemplars that are selected to be closer to the underlying,
lower-dimensional, manifolds on which the various digit or
state classes are located.

In practice, the sparsity of the combination of exemplars
is regulated through the use of a sparsity inducing norm gov-
erned by the λ variable. The cost function (5) allows for
the specification of a different sparsity-inducing weight for
any part of the dictionary, but in [2] only the sparsity of the
speech exemplars was enforced and the weights λ for the
noise part of the dictionary were set to zero.

In order to investigate the influence of the sparsity
weight, and the effect of having a non-zero sparsity weight
for noise exemplars, we investigated recognition accuracy as
a function of sparsity using a small subset of randomly se-
lected SNR 5 dB utterances of the multi-condition train set.
In Figure 1, we show the recognition accuracy as a function
of a single sparsity weight for the speech part (denoted λs)
and the noise part (denoted λn) of the dictionary, for T = 20.

1492



noise sparsity

s
p
e
e
c
h
 s

p
a
rs

it
y

 

 

0 0.5 0.65 0.7 1 1.5 2 2.5 3 3.5 4

0

0.5

0.65

0.7

1

1.5

2

2.5

3

3.5

4

65

70

75

80

85

90

95

Figure 1: Word recognition accuracy on SNR 5 dB utterances
of the multi-condition training set for various values of the
sparsity weight for the speech part and the noise part of the
dictionary. Areas that are white have not been evaluated.

It can be observed that with λn = 0, the optimal value for
λs is 0.65, which is indeed the value reported in [2] and used
elsewhere in this paper. When considering non-zero values
for λn, however, it can be seen there is an strong correlation
between the optimal speech and noise sparsity. As a rule of
thumb, it seems that the optimal values are just off-diagonal,
with the speech sparsity slightly higher than the noise spar-
sity. It can also be observed that the range of recognition
accuracies is quite large, from 63% at when no sparsity is
enforced (λy = 0,λn = 0), to 95%, for (λy = 2,λn = 2).

To see how well tuned sparsity values found in this man-
ner will generalise to the test set, we do a new recognition
experiment using λy = 2,λn = 1.5. The results in Table 4
show that the recognition accuracies are improved in SNR 5
dB, which is the SNR on which was tuned, but also on clean
speech. In the SNR -5 dB condition, however, we observe a
decrease in accuracy. It is worth noting that also on the un-
seen noise types of test set B, the performance of the tuned
system improves at SNR 5 dB.

Further investigation of the influence of the sparsity at
various SNR’s (not shown) revealed that the range of spar-
sity values with which the highest accuracies are obtained
(black areas in Figure 1) get smaller at lower SNRs, while
the absolute values of the sparsity weights increase. In other
words, in the presence of strong background noise it becomes
beneficial to require sparser solutions, which makes the sep-
aration of speech and noise easier, but those same values can
hurt performance at high SNRs.

From this we can conclude that enforcing sparsity does
indeed improve the performance of SC, but also that the
choice of sparsity weight depends on the type of exem-
plars (speech or noise) dictionary and the SNR. As no (non-
Bayesian) method of enforcing sparsity for cost functions of
the form (5) is known that does not require explicit or implicit
tuning of a sparsity-governing parameter, means we should
find smarter ways to govern the sparsity weight λ . It should
be possible to train a set of SNR-dependent parameters in
combination with a SNR estimator, similar to the method
now used for balancing silence states in SC (cf. [3]).

Table 4: Comparison of word recognition accuracy as a func-
tion of the optimisation of sparsity weights.

test set A test set B
SNR [dB] clean 5 -5 5 -5

T=20
Baseline 96.8 88.7 51.9 82.4 33.8
Tuned 97.4 90.3 41.6 87.5 33.6

T=30
Baseline 94.6 89.9 57.2 84.8 37.8
Tuned 96.8 91.2 53.1 87.8 34.2

4.4 Influence of dictionary size

Databases employed in ASR can contain tens of millions
frames of speech data. Especially for exemplar-based meth-
ods, this poses a problem as ideally all the resulting mil-
lions of exemplars should be considered during recognition.
To make recognition computationally feasible, in the exper-
iments with SC on AURORA-2 a speech dictionary of only
4000 speech exemplars is created by random sampling. This
procedure was outlined in Section 3.

The use of random sampling gives to rise to the ques-
tion how sensitive the performance of SC is as a function
of dictionary size. In [7], the influence of dictionary size on
recognition accuracy was first investigated. It was shown that
larger dictionary sizes resulted in higher recognition accura-
cies, although the returns were diminishing. That work how-
ever, employed a predecessor of SC: log-spectral features and
a euclidean distance criterion were used, and since no noise
dictionary was used, only results on clean speech were re-
ported.

In this section, we explore the influence of dictionary
size on clean speech as well as matched and mismatched
noisy speech. Starting from the initial speech dictionary of
16880 exemplars (reduced to 16000 for convenience) de-
scribed in Section 3, we create several smaller sized dic-
tionaries: J ∈ 250,500,1000,2000,4000,8000. The proce-
dure for creating these is simply that each dictionary size is
randomly split into two dictionaries half the size. Since the
choice of random subset might influence the results, we av-
erage the results over four different, non-overlapping subsets
for dictionary sizes J < 4000. A separate experiment (not
shown) showed that for J ≥ 4000, performance did not dif-
fer more than 0.1 percent (absolute) when taking a different
subset of the initial dictionary. Throughout the exemplars,
the same noise dictionary of size K = 4000 was used.

The results on T = 30 in Table 5 reveal that the clean
speech performance rises from 94.6% to 95.9% when in-
creasing the number of speech exemplars from 4000 to
16000. In general, the performance both for clean speech
and for noisy speech seems to increase as the dictionary size
increases, although on SNR -5 dB the accuracy no longer in-
creases if K > 4000. It is worth noting that when using very
small dictionary sizes, the performance on matched noisy
speech is already impressive with 40.6% at SNR -5 dB.

The lack of improvement (and even degradation) on
matched noisy speech observed for K > 4000, is surprising
however. Investigation of this phenomenon revealed that this
is due to the way (5) is solved. The cost function (5) is min-
imised by a multiplicative updates routine as described in [2].
So far, that multiplicative updates algorithm operates with a
fixed number of iterations, F = 200. The number of itera-
tions that was used, however, was set by a non-exhaustive
investigation of the convergence of the cost function that is
minimised.

1493



Table 5: Word recognition accuracy as a function of the num-
ber of exemplars in the speech part of the dictionary. In these
experiments, T = 30 was used. Reported accuracies are av-
erages over multiple choices

test set A test set B
SNR [dB] clean 5 -5 5 -5

J = 250 79.6 71.3 40.6 67.9 29.0
J = 500 86.9 78.7 47.2 75.0 32.3
J = 1000 90.7 83.8 52.9 79.2 34.4
J = 2000 92.7 86.9 55.2 82.3 36.1
J = 4000 94.6 89.9 57.2 84.8 37.8
J = 8000 95.4 89.4 56.2 84.5 36.1
J = 16000 95.9 90.1 55.5 84.2 38.1

Table 6: Word recognition accuracy as a function of the num-
ber of iterations. The results pertain test set A.

SNR [dB] clean 5 -5

T=20
F = 200 96.8 88.7 51.9
F = 250 96.8 88.9 54.2
F = 300 96.8 89.0 54.3

T=30
F = 200 94.6 89.9 57.2
F = 250 94.8 90.4 60.3
F = 300 94.8 90.6 62.4

In Table 6, we show recognition accuracy as a function of
the number of iterations and exemplar size. The results (us-
ing K = 4000) show that for T = 20, higher iteration counts
have no impact on the clean speech recognition accuracy,
but have a significant effect at lower SNRs: the accuracy in-
creases from 51.9 to 54.3% accuracy at SNR -5. For T = 30,
higher iteration counts also have a positive, although not sig-
nificant effect on clean speech accuracy, and the accuracy
increases from 57.2 to 62.4% accuracy at SNR -5. Results
on test set B (not shown) reveal that the performance on the
mismatched noises in test set B also increases significantly,
although less than on test set A. Iteration counts higher than
F = 300 did not lead to further improvements.

A repeat of the dictionary-size experiment with F = 300
(not shown) showed that the performance on SNR -5 dB
matched noisy speech was constant atK> 4000, while on the
mismatched test set and at all other SNRs the performance
kept increasing with dictionary size. From these experiments
we can conclude that the SC performance reported thus far
was suboptimal, and that in general, the bigger the speech
dictionary, the better the performance.

At the same time, the computational complexity in-
creases linearly with dictionary size, so for a practical ap-
plication of SC a more principled way of constructing the
speech dictionary would be preferable. Unfortunately, our
preliminary experiments employing clustering techniques
did not result in dictionaries that work better than dictionar-
ies randomly extracted from the speech database. Perhaps a
more promising way would be to find a way to use hierarchi-
cally structured dictionaries to efficiently search for sparse
linear combinations of exemplars.

5. GENERAL DISCUSSION AND CONCLUSIONS

In this paper, we investigate several aspects of Sparse Classi-
fication (SC) that are of interest when developing a practical
implementation of SC. First, we addressed the computational
complexity of SC and showed that large speedups can be ob-

tained with a mainstream GPU and with only a minimum
of effort. Recognition experiments show that the use of sin-
gle precision floating point variables necessary for obtaining
these speedups does not result in a significant decrease in
accuracy. With speedups of up to 28, consistent with those
reported on in literature for similar applications [4], real-time
processing using SC seems now within our grasp.

A second issue that was addressed is the noise robustness
of SC in the presence of noise types not present in the noise
dictionaries. By combining noise exemplars extracted from a
noise database with artificial noise exemplars, good noise ro-
bustness is obtained on both matched and mismatched noisy
test sets. In a third experiment, the influence of enforcing
sparsity was investigated. It was found that for both the
speech and noise parts of the dictionary, the use of sparsity
is beneficial. At the same time, it became clear that the spar-
sity weights were SNR-dependent and should be governed
by hyper-parameters.

Finally, the influence of speech dictionary size was in-
vestigated. It was found that the larger the speech dictionary,
the better the recognition accuracy on both clean and noisy
speech, although the returns are diminishing. With the issue
of computational complexity largely resolved, research on
SC should now focus on more robust and adaptive methods
to determine the necessary tuning parameters, efficient ways
of using larger dictionaries, and investigate the effectiveness
of SC on larger vocabulary tasks.

Acknowledgements

The research of Jort F. Gemmeke was supported by the
Dutch-Flemish STEVIN project MIDAS and by IWT project
ALADIN. The research of Tuomas Virtanen and Antti Hur-
malainen has been funded by the Academy of Finland. The
research of Yang Sun has received funding from European
Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement no. 213850.

REFERENCES

[1] L. Deng and H. Strik, “Structure-based and template-
based automatic speech recognition - comparing para-
metric and non-parametric approaches,” in Proc. INTER-
SPEECH, 2007, pp. 898–901.

[2] Jort F. Gemmeke and Tuomas Virtanen, “Noise robust
exemplar-based connected digit recognition,” in Proc.
ICASSP, 2010.

[3] Tuomas Virtanen, Jort F. Gemmeke, and Antti Hur-
malainen, “State-based labelling for a sparse representa-
tion of speech and its application to robust speech recog-
nition,” in Proc. Interspeech, 2010.

[4] Pradeep Nagesh, Rahul Gowda, and Baoxin Li, “Fast
GPU implementation of large scale dictionary and sparse
representation based vision problems,” in Proc. ICASSP,
2010, pp. 1570–1573.

[5] Jort F. Gemmeke and Tuomas Virtanen, “Artificial and
online acquired noise dictionaries for noise robust ASR,”
in Proc. Interspeech, 2010.

[6] “GPUmat: GPU toolbox for MATLAB,” Online:
http://gp-you.org/, 2010.

[7] Jort F. Gemmeke, L. ten Bosch, L.Boves, and B. Cranen,
“Using sparse representations for exemplar based con-
tinuous digit recognition,” in Proc. EUSIPCO, Glasgow,
Scotland, August 24–28 2009, pp. 1755–1759.

1494


