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ABSTRACT 

2-D shape recognition and content-based image retrieval 

using the boundary information as a 1-D time series is a 

common way of addressing the shape-matching problem. A 

significant factor for successful object identification is in-

sensitivity to basic shape deformations, such as scaling, 

shifting, rotation, partial distortions etc. In this paper, a 

method for handling the time series boundary information 

as a set of feature vectors in the reconstructed phase space 

is proposed. Besides enhanced discrimination, projection in 

phase space facilitates the fusion of several boundary de-

scriptors as well. Optimal information extraction from the 

multivariate time series is achieved by proper embedding 

dimension and time-lag parameter selection. Centroid con-

tour distance (CCD) and Angle Sequence (AS), capturing 

both local and global shape information in a circular man-

ner, are the descriptors employed in the fusion stage. Invari-

ance to rotations and insensitivity to partial deformations is 

achieved while retrieval performance is enhanced. The 

method is applied and evaluated in MPEG-7 part B shape 

database using early or late fusion.  

1. INTRODUCTION 

Content based 2-D shape retrieval is an important issue in 

computer vision. It requires efficient descriptors that take into 

account the possible shapes' deformations, as well as an ef-

fective comparison method.  Shape descriptors are divided 

into three main categories: contour based, image based and 

skeleton based [1], [2]. A plethora of shape descriptors can be 

found in literature. Descriptors that originate from the con-

tour [3], [4] have been enriched with the presence of geodetic 

distance [5], aiming to include information from the shape 

interior. In the Shape Context [3] method a discrete set of 

points sampled from the contours serve for shape description, 

while the method is improved [6] by the adoption of inner 

distances, in place of Euclidian (IDSC). Our method is also 

contour based, implementing a discrete time series represen-

tation of the pixels that belong to the shape outline. The 

above shape contour – time series modeling is quite common 

in shape research as it makes distance computation and simi-

larity assessment between shapes easier. In [7] the scaling 

invariant problem in boundary image matching is addressed 

in the time series domain instead of image domain. In [8] the 

rotation insensitivity problem is addressed, using time series 

conversion of shapes while in the present work deduction of 

a time series enables the shape description in phase space. 

 In this paper multivariate time series are extracted from 

1-D contour point sequences, in order to use reconstructed 

phase space [9]. From the serial 1-D data, a set of embedding 

vectors is formed. In this representation the time lag parame-

ter and the embedding dimension have to be found. Their 

selection, which is mostly influential to algorithm perform-

ance, is studied in this work. Proper combination of these 

parameters can capture both global and local information of 

the original sequence. The phase space method is applied in 

two well known shape descriptors, the Angle Sequence (AS) 

[10] and the Centroid Contour Distance (CCD) curve [11]. 

       The idea of phase space reconstruction from a 1-D se-

ries, as well as a multivariate statistical method for compar-

ing multidimensional points, has already been tested on the 

specific shapes of leaves database (subset of Smithsonian 

database) in a forthcoming publication by the present au-

thors [13]. The phase space approach to the 1-D series rep-

resentation, analysis and processing has also been used in 

several other cases [12],[14],[15]. In this work the phase 

space concept is farther utilized in combined use for improv-

ing shape retrieval. 

       Phase space representation is suitable for the fusion of 

various descriptors originating from differently parameter-

ized time series or descriptors that encode diverse informa-

tion. Fusion of descriptors can be implemented either in the 

first stage, by concatenating characteristics that provide dif-

ferent shape information (early fusion), or in the final stage 

utilizing the dissimilarity between two shapes (late fusion). 

It is the scope of this work to demonstrate that the richness 

of information available to each separate descriptor, com-

bined with the advantages of phase space representation, 

result in improving shape retrieval performance.  

The rest of the paper is organized as follows. In section 2 

the core of the multidimensional phase space method is de-

scribed.  The two phase space reconstruction parameters, i.e. 

time lag parameter and embedding dimension are studied and 

the matching stage is explained. The main part which focuses 

on the fusion process is described in section 3 and experi-
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mental results for evaluation of the method are given in sec-

tion 4.   Conclusions and future work are given in section 5.  

2. PHASE SPACE REPRESENTATION OF TIME 

SERIES 

The transformation of  a 1-D sequence into a set of multidi-

mensional points is a well known signal analysis technique  

encountered  in the field of non-linear dynamics. There, us-

ing appropriate delays and dimension on the time series data, 

the reconstructed phase space can provide valuable informa-

tion about the nature and dynamics of the underlying generat-

ing system. For the present work, borrowing the same basic 

‘phase space’ methodology and terminology we examine the 

1-D series signal that comes from the shape’s contour which 

can be considered containing significant information about 

the hidden variables behind its formation. 

2.1 Feature extraction 

The feature extraction stems from the mapping of a time 

sequence to phase space using a certain time lag and an em-

bedding dimension. The resulting phase space reconstruc-

tion provides the multivariate trajectory and the associated 

set of vectors that form the shape feature. 

Let x(n) be the time sequence consisting of p points. 

Then the transformation into phase space is achieved using 

the following equation (1), where X(n) is an m-dimensional 

vector: 

X(n) = {x(n) x(n+ 1·T) ... x(n+(m-1) ·T)} , n=1:p . (1) 

T is the time-lag parameter, and m is the embedding dimen-

sion. Therefore from each x(n) sequence, a set of p, m-

dimensional vectors is produced: [X(1) X(2) ... X(p)] 

 

centroid

 

 

Figure 1 – CCD calculation & its Centroid Contour Distance 

 

 

Figure 2 –Angle calculation & a bone's angle sequence.  

 

Several point sequences are eligible for representing the 

shape boundary. No constraint is imposed, and the selection 

is dictated by the specific application. In this work the Cen-

troid Contour Distance (CCD), and Angle Sequence (AS), 

two well known descriptors are selected [10],[11]. CCD is a 

descriptor formed by consecutive boundary -to- centroid 

Euclidean distances (Figure 1). It has been extensively used 

in shape description [4],[2],[16], with the main drawback 

being its sensitivity to shape deformations. Adopting proper 

normalizations it can be made scale invariant, while transla-

tion invariance is innate. The CCD sequence does not pos-

sess rotation invariance, resulting in the need of defining a 

stable starting point. However this property is acquired in the 

phase space mapping. The second descriptor is the Angle 

Sequence (AS), which is a sequence of angles formed by the 

contour points (Figure 2). The AS, properly encoded into 9 

values has been widely used in the form of Angle Code His-

togram (ACH) [16]. ACH ignores structural information but 

achieves rotation invariance, which otherwise is difficult to 

attain. The angle computed in the contour coordinate system 

is assigned to each boundary point and concatenation of these 

angles form the AS, which takes values in the range 0 to 180 

(degrees). The AS is tolerant to shape deformations but it is 

sensitive to noise. The descriptive capability of these two 

descriptors is complementary providing diverse information 

and their combination enhances the retrieval procedure. 

Having decided for the time series selection the phase 

space representation follows, where a time sequence x(n) is 

transformed to a set of m-dimensional vectors, forming 

points in phase space R
m
. The number p of these vectors is 

equal to the number of boundary points. It should be noticed 

that these time series of shape boundary points are calculated 

in a periodical way and problems related to start and end 

effects are dismissed. 

In the phase space representation new properties  

emerge.  Rotation invariance, which is not inherited from the 

time series is acquired if the time index of trajectory is 

dropped. In the absence of time index the whole set of multi-

dimensional feature vectors describes the shape and probabil-

istic measures are employed to quantify the shape's - dis-

tance. Although global information (like histogram) is util-

ized in the matching stage, the structure is still taken indi-

rectly into account by each vector X(n), which conveys in-

formation of m consecutive boundary points. This could be 

also considered as partial matching. Partial matching is im-

portant when shapes have distortions in some of their parts. 

The acquisition of global or local information depends on the 

parameters (time-lag T, embedding dimension m) selection. 

Therefore different scales of shapes are received.  

 

 
Figure 3 – Phase space reconstruction of CCD for the image 

“bone”, for time-lag T=1 and T=10. 
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In conclusion this shape descriptor (1) is rotation invari-

ant, since the rotation does not alternate the set of p, m - di-

mensional vectors that represent a given sequence. Transla-

tion invariance is inherited from the original sequence (CCD, 

AS). Proper down sampling and normalization is essential 

for scaling invariance. All CCD, AS values are normalized 

and their range is [0,1].  

An example of a phase space representation in 3-D 

(m=3) for the CCD time series of image “bone” is given in 

Figure 3, where trajectories for time-lag T=1 and T=10 are 

shown. The corresponding representation in phase space for 

the AS time series is given in Figure 4. 

 

 
Figure 4 – Phase space reconstruction of AS for the image “bone”, 

and for time-lag T=1 and T=10. 
 

2.2 Parameter selection 

When transforming a time series into phase space, a proper 

estimation of time-lag parameter T and embedding dimen-

sion m should be adopted. There exist several methods for 

selecting time lag T, such as mutual information criterion or 

by utilizing autocorrelation information [20]. In this paper 

autocorrelation functions were used to obtain an approxima-

tion of time-lag parameter. The autocorrelation between x(n) 

and x(n-T) is calculated using the following equation (2), 

where E{} stands for the mean value: 

})]()({[

))}({)}()({
)}(),({

2

2

TnxnxE

nxETnxnxE
TnxnxC

−−

−−
=−     (2) 

The value of T, where the first zero crossing occurs, is 

the necessary value. The above equation (2) is repeated for 

every time-series in the database, including both AS and 

CCD. Results showed that a mean value for optimum T when 

dealing with CCD is T=20, while for the AS case T=10.  

Selection of the embedding dimension m is accom-

plished by using the False Nearest Neighbour (FNN) method 

[17]. This method is based on the fact that m-dimensional 

phase space must preserve the topological properties of the 

original phase space (Taken's theorem). Otherwise a higher 

dimension should be set for correct phase space reconstruc-

tion. The algorithm of finding the FNN is described as fol-

lows: 

For each data point X
m
(i) in R

m
 space find the nearest 

neighbour, as the point that shares the smaller Euclidean 

distance: 

X
m
(j)NN=d

min
(X

m
(i),X

m
(j)) 

using a predefined embedding dimension m.                  

Augment m by b,  b Ζ∈ + 
 and calculate the distance (3) be-

tween the two points : 
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When ri exceeds a given threshold, then X
m
(i) is marked as 

having a false nearest neighbour. Application of FNN in our 

database indicated an optimum embedding dimension ap-

proximately at m= 5. 

The above methods provide a rough estimation for these 

parameters and were used as initial guidelines. However, 

experimental results for retrieval tasks reveal different opti-

mum values which are adopted in this work.  

2.3 Matching process 

A multivariate comparison method is adopted [19] in order to 

quantify similarity between vector sets in phase space. Given 

two sets of vectors - trajectories in phase space - X{xi}, 

i=1:p1, Y{yj}, j=1:p2 where p1, p2 stand for the number of 

points in phase space in each set, Mutual Nearest Point Dis-

tance is computed using  the following equation (4): 
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From each point xi in the m - dimensional data set X the 

nearest distance to the m - dimensional data set Y is defined. 

The MNPD is calculated in a bidirectional manner in order to 

avoid extreme cases where trajectories in phase space be-

longing to different data sets share small distances when cal-

culating one-directional distances. Summation of these dis-

tances leads to X-to-Y dissimilarity. The denominator is used 

for normalization purposes. The WW statistical test [18] 

could have been also used instead, but he MNPD is a lower 

complexity algorithm [19] and for that reason it was pre-

ferred. 

 

3. FUSION METHODS IN PHASE SPACE 

Combination of the two selected features can be imple-

mented in two different stages of the retrieval process. The 

objective is to advantageously combine information con-

tained in the two different descriptors either in the early 

stage producing a new feature, or in a later stage producing 

another distance measurement. In both cases the present 

method is very well suited for fusion purposes. An indica-

tion of the improved discriminating capability achieved by 

the combination of the above two descriptors is given in 

Figures 5, 6. For visualization purposes, the phase-space 

parameters have been set to m=2 and T=1.  
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3.1 Early Fusion 

Early fusion yields a truly feature representation, since the 

features are integrated from the start.  In that way computa-

tional cost is comparable to that of individual descriptors. 

This approach generally encounters the problem of combin-

ing features into a common representation. Our method 

deals with vectors in phase space which are easily combined 

in a  concatenation scheme producing a new longer feature 

vector. Given two set of vectors X{xi}, i=1:p, Y{yj}, j=1:p a 

new vector Z is produced,  

Z{zk}, k=1:p, zk = concatenate (xi, yj).  

In order to incorporate information that corresponds to the 

same shape part, feature vectors of the same embedding 

dimension and time-lag parameter should be used.  Let xi 

values represent boundary-to-centroid distances points in 

phase space and yi represent boundary angles points in phase 

space, zk includes both descriptors: 

z1 = [x1 y1], z2 = [x2 y2], ..., zp = [xp yp] 

The new features Z{zk} constitute the input for the matching 

algorithm. Retrieval results of the new feature are given in 

section 4 and prove the optimized performance which is 

about 7% above the performance of individual descriptors 

(CCD or AS). 

 

3.2 Late fusion. 

Late fusion refers to scores' combination. It is based on the 

individual strength of methods that are combined. A com-

mon disadvantage of late fusion which is the potential loss 

of correlation in mixed feature space, does not apply in our 

case. Let MNPD(Xi, Xj) and MNPD(Yi, Yj), measuring the 

dissimilarity between set of vectors in phase space originat-

ing from  CCD and AS sequence respectively. Fusion of 

these descriptors is implemented by simply averaging the 

dissimilarity measures MNPD(Xi, Xj) and MNPD(Yi, Yj). 

Retrieval proceeds using the new average distance. It should 

be noticed that an advantage of score's merging is that com-

bination of phase spaces with different embedding dimen-

sion or/and time-lag parameter is feasible. Results of late 

fusion are given in next section 4.  Late or early fusion both 

optimize the retrieval performance a great deal and to almost 

the same level. 

4. EVALUATION 

The proposed method was tested in MPEG-7 Part B shape 

database, containing 1400 shape silhouettes (70 classes of 

various shapes, each class containing 20 images), including 

both scaled and rotated versions of shapes.  A small sample 

of this database is given in Figure 7. These are the four im-

ages used in the previous phase trajectory examples. 

Performance evaluation was implemented using the Bullseye 

test. Each image served as a query in the retrieval process. 

The number of images belonging to the same class was 

counted at each trial, over the 40 most similar retrieved im-

ages. Table 1 shows the improvement of individual descrip-

tors when fusion is used.  

 

Figure 7 – Sample of MPEG-7 database 

Table 1 -  Improvement of individual descriptors using fusion 

Method Time-lag Embedding 

dimension 

Bullseye score 

AS 5 15 64.9 % 

CCD 12 5 68.8 % 
AS+CCD 

(early fusion) 
5 15 75.1 % 

AS+CCD (late 

fusion) 

5, 12 (respec-

tively) 

15,5 (respec-

tively) 

75.1% 

 

Our method reached a Bullseye score 75%, while the state-

of-art method of [1] yielded a score of 86.56%. Τhe algo-

rithm proposed by [1] uses the IDSC [6] as a feature, while 

introduction of the EMD-L1  as the matching method -

which is an improvement of the EMD algorithm- leads to 

such a high retrieval rate. The difference in performance is 

due to the choice of complex algorithms, accompanied by a 

relevant computational cost, in the feature extraction stage. 

 

Figure 5 – Fusion of  AS and CCD descriptors in 2-D for alike 

shapes. The strong similarity of phase space trajectories is no-

ticeable. 

 

Figure 6 – Fusion of AS and CCD descriptors in 2-D. The dis-

similarity of different shapes' trajectories is clear. 
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5. CONCLUSIONS 

 

The proposed embedding of 1-D shape descriptor time se-

quences in phase space creates an efficient representation for 

shape indexing and discrimination. Invariance to rotation as 

well as insensitivity to partial distortions of shapes is easily 

achieved. Proper selection of parameters (time-lag and em-

bedding dimension) that are used for phase space reconstruc-

tion results in the efficient integration of diverse information 

of the shape contour.  The ease of implementing fusion in 

phase space is an additional advantage of the suggested me-

thod, as combination of different descriptors improves the 

retrieval process. Furthermore, the method has a wide appli-

cability and can be easily modified to extract phase space 

portraits from any 1-D time series descriptor. Application of 

the proposed method to MPEG 7 shape database proved very 

promising, while application to other sequences such as sig-

natures, biometrics etc is almost straight forward. Moreover, 

in the proposed method a predefined set of phase space pa-

rameters was adopted in order to represent the whole data-

base's shapes.  Implementation of methods that select dy-

namically the time lag parameter or/and the embedding di-

mension for each shape individually, is left for further re-

search.  Furthermore, improvement in the matching stage 

could be achieved by considering only representative bound-

ary points, such as curvature zero crossings, in order to  en-

hance the discriminative capability of the method. Finally, a 

family of global descriptors, e.g. solidity, eccentricity etc can 

be incorporated in order to enhance the overall retrieval re-

sults. 
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