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ABSTRACT 

In this paper, we extract a range of features including time-

based, spectral-based, and phase-based to characterize 

working memory load in EEG recordings from a reading 

task in which different levels of working memory load were 

induced. It is demonstrated that a subset of time-based and 

spectral-based features - the mean, cross-correlation, and 

energy of the EEG signals - recorded from a few frontal 

channels in the delta frequency band, and also the 

statistics of selected wavelet coefficients are representative 

of working memory load and change most consistently in 

accordance with the induced load. We show classification 

accuracy of up to 100% for three working memory load 

levels across all five subjects. This is achieved using a 

multi-class support vector machine (SVM) trained on the 

above features from four frontal EEG channels. We present 

results suggesting that delta frequency sub-band carries 

most of the information associated with working memory 

load. Having used the above features, we also demonstrate 

that shorter window lengths and a smaller number of EEG 

channels can be successfully applied for similar contexts. 

  

1. INTRODUCTION 

 

Cognitive load is the amount of task load applied on the 

working memory by a cognitive process.  Recently, there 

has been increasing interest in maintaining an optimal level 

of cognitive load applied on the brain, especially in critical 

decision making fields, such as air traffic control, fire 

command and military operations, where the imposed task 

load can be very high and may lead to decreased 

performance or even failed task completion [1].  

Electroencephalography (EEG) measures brain 

activity by recording the neural electrical fluctuations 

along the scalp.  It is reliable, noninvasive, economical, 

and is highly sensitive to different cognitive task loads and 

therefore has been successfully applied in on-line 

monitoring and measurement of different types of mental 

activities and workloads in cognitive science and 

psychology [2].  Recently, the usage of EEG has become 

more feasible for real-world applications with the 

availability of wireless EEG systems [3]. 

A variety of features have already been investigated 

for mental task classification. These include the use of the 

statistics of the EEG signals in the time domain; e.g. 

amplitude values (ERP studies) [4], mean and standard 

deviation [5], root mean squared (RMS) [6], and 

absolute/relative/maximum power [7]. Features based on 

spectral characteristics [8], and the entropy of different 

sub-bands of the EEG signals have also been proposed [9]. 

Some work has modeled the EEG signals as an auto-

regressive model and used the model parameters as 

features [10]. However, most of the studies which 

specifically address the problem of determining working 

memory, cognitive load level or the related problem of 

assessing task difficulty, mainly consider PSD or ERP 

based features for classification [4, 7, 8]. Furthermore, they 

usually analyze the EEG signals only in two frequency 

bands in classification of cognitive loads, the alpha and 

beta, while other bands are ignored [5, 7, 8].  

In this study, we examine and compare the suitability 

of different classes of features for discriminating between 

varying levels of induced working memory load, towards 

an understanding of which frequency bands, channels and 

features are optimal for an EEG-based workload 

classification system. We conclude that a few features 

extracted from the EEG signals recorded from the frontal 

channels represent the working memory load well.  

 

2. EXPERIMENTAL METHODS 

 

2.1. Experiment 
 

Five healthy male volunteers, 24-30 years of age, engaged 

in postgraduate study, participated in the experiment. A 

silent reading task, displayed and controlled on a laptop PC 

with a viewing distance of 70 cm to the participant, was 

adopted. The task was chosen to be semantically neutral 

and comprehension-independent to avoid any expertise 

effect, and assumed the reading ability of all participants to 

be relatively similar.  

The Lexile framework for reading [11] was used to 

rate the task readability/complexity and ensure that it 

induced three different difficulty loads (1020, 1090, and 

1150 for the low, medium, and high levels) to the 

participants’ working memory.   

The task was split into three levels; participants were 

asked to read the displayed pages silently and pick up three 

(low), three and four (medium) or three, four and five 

(high) letter words by pressing the mouse left/middle/right 

button. In the baseline condition, conducted after the 

experiment, the subjects were asked to sit relaxed and keep 

their eyes open. This signal was recorded and used later as 

a reference signal (baseline) for calculating some of the 

features discussed in the next Section. This is also another 

way of checking that the change in feature values from 

low to medium to high is not just signal drift of some 
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kind.  To minimize any muscle movement artifact (EMG), 

the participants were asked to silently sit still and their 

hand was placed fixed in a certain position, where they 

could still make finger movements in response to the word 

stimuli. Since the channels of interest include frontal 

channels susceptible to ocular artifact, subjects were 

required to refrain from blinking as much as possible 

during the recording. Each task level lasted for 2 minutes, 

and between each two levels the participants were given 30 

seconds rest (to blink and stretch). The experiment was 

repeated twice. Visual inspection of the recorded signals 

showed that no artifact removal was necessary. 

 

2.2. EEG Recording 
 

The participants’ EEG signals were recorded using an 

Active Two acquisition system [12], at the ATP 

Laboratory of National ICT Australia in Sydney. The 

experiment was conducted under controlled conditions in 

an electrically isolated lab, with a minimum distance of 5 

meters from power sources to the experiment desk, and 

under natural illumination.  Each recording contained 32 

EEG channels, according to the international 10 - 20 

system. The data were recorded at a sampling rate of fs = 

256 Hz.  The EEG signals were passed through a built-in 

band-pass filter with cut-off frequencies of 0.1-100 Hz; 

the attenuation of this filter at DC was not large, hence the 

utility of the mean feature is discussed in subsequent 

Sections. Each participant completed 120 seconds of each 

task level twice. 30 seconds of the beginning of each level 

was discarded to make sure the participants are engaged in 

the task and also remove some EMG artifacts observed. 

 

3. EEG SIGNAL ANALYSIS 

 

The EEG signals ][nx  were first segmented using 

rectangular window length of 5 seconds.  The th
i segment 

is represented by 1,...,1,0 ],[ −= Nnnx  where sfTN ×=  

with an overlap of 4 seconds between the successive EEG 

segments.  Initially, we investigated the spectral for the 

working memory load task using a PSD function.  

The results given in Fig.1 show that most of the 

spectral components of the recorded EEG signals lie below 

4Hz, corresponding to the delta sub-band (0-4 Hz) of the 

EEG frequency bands. This matter is discussed further in 

Subsection 4.2. Therefore, the recorded signals were 

mainly studied in the delta sub-band, which we denote 

as ][nxδ . From the signal ][nxδ , we computed the 

following features for each segment. 
 

Time-based features: This includes MEAN, 

ENERGY, zero-crossing rates (ZCR), and the maximum 

cross-correlation (MCOR).  The MCOR is the maximum 

cross-correlation between the EEG signal ][nxδ  and the 

baseline condition signal ][nbδ  proposed by the authors. It 

is given by the following equation: 

; )(max
12,...,2,1

NmRMCOR xb
Nm

−=
−=

 







≥+

= ∑
−−

=

              

0;][][
)(

1

0

mnbmnx
mR

mN

nxb

 
 

(1) 

0 4 8 12 
-48

-46

-44

-42

-40

-38

-36

-34

-32
Subject 1, Channel Fp1

Frequency (Hz)

P
S

D
 (

d
B

m
)

 

 

Low Load

Medium Load

High Load

 
Fig. 1. Example PSDs extracted from the segmented EEG for subject 1, 

channel Fp1, recorded during imposed high, medium, and low load 

levels. The EEG frequency bands used are: (0-4Hz) delta, (4-8 Hz) theta, 

(8-12 Hz) alpha, (12-30 Hz) beta, (30-100 Hz) gamma. 

 

Spectral-based features: This category contains three 

features; first the frequency at which the PSD attains its 

peak magnitude value (PSDM), second the signal wavelet 

decompositions extracted from ][nxδ . The 5-level wavelet 

decomposition corresponding to the delta sub-band was 

also calculated on each EEG segment.   The level 5 

approximate coefficient was then computed and denoted 

by ][naδ . The wavelet based features proposed herein were 

extracted from the coefficients of the level 5 

approximation ][naδ , using the mean (AMEN), minimum 

(AMIN), and maximum (AMAX). 

Third, we computed the spectral coherence (SPC) 

given by the following equation [13]:  
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In eq. (2), )( fC XX
 and )( fCBB are the PSDs of ][nxδ   

and ][nbδ , )( fCXB  is the cross PSD, and ⋅  is the 

averaging operator. The signal ][nbδ represents a segment 

of the same size from the baseline EEG (i.e. resting 

condition, no cognitive load) in the delta frequency band 

for the same channel as ][nxδ . The SPC has a value in the 

interval of ]1,0[ . A value of “1” means that the 

corresponding frequency components of the two signals 

are identical, except for a multiplicative amplitude 

difference and a constant time relation (phase delay). A “0” 

value indicates that the corresponding frequency 

components of the both signals are not correlated.  
 

Phase-based features: The first feature of this kind 

represents the mean of the instantaneous frequency 

(IFME). The instantaneous frequency (IF) of a given non-

stationary signal shows how its frequency content changes 
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with time and the mean is given by the following equation 

[14]: 
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where ][nz  is the analytic signal associated with ][nxδ , 

i.e. ]}[{][][ nxHnxnz δδ += , {.}H  denotes the Hilbert 

transform. 

The second phase-based feature examined here is the 

phase locking value (PLV), applied previously in BCI. It 

measures the variability in instantaneous phase difference  

][][ nn bx ϕϕ −  between the EEG channel signal ][nx and the 

baseline signal  ][nb   [13]: 

]))[][(exp( nnjPLV bx ϕϕ −=  (4) 

 

The instantaneous phases are determined using the Hilbert 

transform, e.g. as ])[/]}[{arctan(][ nxnxHnx δδϕ = . 

PLV has also a value in the interval of ]1,0[ . When the 

phase difference is constant, there is phase synchronization 

so the PLV is equal to “1”. If the phase differences are 

randomly distributed over ]2,0[ π , the PLV will be “0”. 

Here we consider the PLV between the task condition 

signal and the baseline condition signal. 
 

4. RESULTS            

 

4.1. Feature Comparison 
 

The performance of all features introduced in Section 3 

was examined and compared for all the 32 EEG channels. 

Table 1 displays the statistical evaluation for all features 

extracted from channel Fp1 for subject 1, using a paired t-

test to generate p-values. Here, the values of the extracted 

features ZCR, IFME, PSDM, SPC, and  (to a lesser extent) 

PLV show significant overlaps between different load 

levels and are not able to discriminate between different 

levels of load, seen also in the high p-values.   Hence, 

phase-based features were broadly found to be less 

promising for this application. On the other hand, the 

values of the remaining time and spectral-based features; 

namely: the MEAN, ENERGY, MCOR of ][nxδ  and 

AMEN, AMIN, and AMAX of ][naδ  in different load 

levels have no overlap; these features were found to 

distinguish different load levels completely in some below 

channels for all subjects, also indicated by p-values close 

to zero.  These discriminative features were also 

subsequently applied to a classifier for classification 

evaluation, in Subsection 4.5.  

As seen in Table 1, the MEAN, AMEN, AMIN, and 

AMAX of channel Fp1 exhibit a consistent increasing 

trend as load level increases. This shows that level shifts in 

these features are proportional to the task load level. 

However, the ENERGY and MCOR show decreasing 

trends. Similar trends were observed across all frontal 

channels (Fp1, Fp2, AF3, AF4, Fz, F3, and F4) for all 

subjects as working memory load increases.   

      For illustration purposes, the AMIN feature extracted 

from the delta band of the EEG signals representing three 

different task difficulties for one subject is shown in Fig 2.  

It reveals that as the task difficulty increases, the AMIN of 

the EEG signal tends to increase, and therefore each load 

level is clearly distinguishable from other levels. 

 

4.2.  Working Memory Load Discrimination by 

Frequency Band 

Although we carried out initial examination of the working 

memory load discrimination as a function of frequency in 

Section 3, we investigated this matter further, to quantify 

the differences between bands.   Accordingly, we examined 

the working memory load discrimination capability of 

different frequency bands, using an energy feature in each 

case. Fig. 3 shows the means and 95% confidence intervals 

of the energies extracted for each of the delta, theta, alpha, 

beta and gamma bands for the Fp1 channel of subject 1. 

Clearly the delta frequency band is the only band that 

provides cognitive/working memory load discrimination 

for the given experiment. 
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Fig. 2. Values for the AMIN feature extracted from the segmented Fp1 

EEG data for the first participant. The top, middle, and bottom curves 

belong to the EEG signals recorded during high, medium, and low levels 

of task difficulty, respectively. 

 

Table 1. Results of feature calculation for different load levels of the 

EEG signals acquired from channel Fp1 of subject 1. 

Extracted 

Feature 

Load Level p-value 

Low  Medium  High  

MEAN
 

-0.0209 

±0.0001 

-0.0198 

±0.0002 

-0.0188 

±0.0002 

1.2346e-089 

ENERGY
 

0.5583 

±0.0069 

0.5017 

±0.0118 

0.4513 

±0.0098 

1.6904e-089 

ZCR 10.5000 

±9.5000 

10 

 ±9 

10.5000 

±9.5000 

0.5225 

IFME 0.5227 

±0.4724 

0.5033 

±0.4530 

0.5250 

±0.4746 

0.5065 

PSDM 0.4375 

±0.3125 

0.6250 

±0.5000 

0.5000 

±0.3750 

0.9530 

SPC
 

0.9925 

±0.0045 

0.9924 

±0.0032 

0.9917 

±0.0043 

0.0854 

MCOR 0.6907 

±0.0051 

0.6544 

±0.0068 

0.6203 

±0.0064 

2.0476e-089 

AMEN -0.1182 

±0.0007 

-0.1120 

±0.0013 

-0.1062 

±0.0012 

2.0119e-089 

AMIN -0.1182 

±0.0007 

-0.1121 

±0.0013 

-0.1064 

±0.0012 

1.8237e-088 

AMAX -0.1180 

±0.0008 

-0.1116 

±0.0015 

-0.1059 

±0.0012 

1.0998e-087 

PLV 1.0000 

±1.000 

 

1.0000 

±1.000 

 

1.0000 

±1.000 

0.0331 
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This was supported by similar results for other 

discriminative features from the frontal channels across all 

subjects.  Given that the task is a silent reading task, this 

finding confirms previous studies showing that delta 

activity is an indicator of attention during mental tasks, so 

that by increasing task demand, participant attention to the 

task and also the delta band activity increase [15, 16]. So 

far, just a few related studies analyze the delta band and the 

remainder ignore it, citing the likelihood of artifacts 

(especially EOG) appearing in this frequency band. 

However in this study, we carefully avoided EEG signals 

with EOG contamination and consider it very unlikely that 

the very consistent feature changes during the different 

work load levels across all the subjects are due to EOG.   
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Fig. 3. Means (x) and 95% confidence intervals for energy features 

extracted for delta (D), theta (T), alpha (A), beta (B) and gamma (G) 

bands, for low (L), medium (M) and high (H) cognitive loads, for Fp1 

channel in subject 1. The delta values have been reduced by a factor of 

10
6
 for comparison purposes. 

 

4.3.  Working Memory Load Discrimination by 

Electrode Position 

 

In order to understand which channels yield the best 

performance for discrimination purposes, all 32 channels 

were initially examined using the MEAN feature. 

Specifically, the difference between feature values between 

two adjacent load levels was computed, and the results 

displayed as a spatial heat map. This was repeated across 

all subjects, and for different discriminative features. It was 

found that mainly the frontal EEG channels mentioned in 

Subsection 4.1 were the most discriminative channels for 

working memory load separation in this experiment, 

showing highly consistent trends across all 5 subjects, for 

the successful features identified earlier in this Section. 

For illustration purposes, the MEAN features 

extracted from the EEG signals of one subject representing 

two different load levels (Low and Medium) is shown in 

Fig. 4.  This reveals an area of maximum difference 

between feature values (i.e. close to “1”) that perfectly 

covers the frontal lobe, especially Fp2 and F4 on the right 

side of the frontal lobe and Fp1 and AF3 on the left side; 

similar results were observed across all 5 subjects. 

These results are in line with the related findings 

indicating that the increasing memory load in the working 

memory is reflected in the brain frontal lobe [17]. 

However, this is the current understanding of association 

of the frontal lobe with the working memory. To our 

knowledge, the exact corresponding EEG electrodes 

positions have not been identified previously. 

 
Fig. 4. Spatial heat map for the difference in MEAN feature between low 

and medium load levels for one subject, with frontal electrodes seen at 

the top. Note that the scale has been normalized, so that “0” reflects no 

difference and “1” reflects the maximum difference in feature values. 

 

4.4.  The Effect of Window Length  
 

We also investigated the effect of the window length T on 

the discriminative capability of the features. Specifically, 

the 95% confidence interval of the MEAN as a function of 

the window length was calculated for each load level, 

for econds 10 ,...,2,1 sT = . Results showed that shorter 

windows produced only slightly (<10%) wider confidence 

intervals than longer windows, suggesting that a window 

length as small as  1=T  second could be used effectively 

for cognitive/working memory load measurement. This is a 

preliminary result however, and should be investigated 

further experimentally using more challenging 

classification tasks, e.g. either more levels of induced 

memory load or less separable load levels. 
 

4.5.  Working Memory Load Classification 

 

In order to gauge the classification performance for this 

data set across all subjects, a selection of the features 

mentioned in Section 3 were then used to train a multi-

class SVM. To successfully classify three load levels; Low 

(L), Medium (M), and High (H), two SVM classifiers were 

used; one classified L from M and H, and the second SVM 

classified H from L and M. Here, we deployed SVM with a 

linear kernel, and compared the results of the three load 

level classification for all the frontal channels, applied on a 

per-subject basis.  50% of   the data (for each task level for 

each subject) were used for training and the remaining 

50% for testing, and only those features with the smallest 

p-values from Table 1 were considered.  

     We performed the SVM classification on the frontal 

EEG channels mentioned in Subsection 4.1. The results 

showed that mostly the four channels offer the highest 

classification accuracy. Namely; channels Fp1, Fp2, AF3, 

and F4 which are displayed in Table 2. As shown, the 

features MEAN, AMEN, and ENERGY provide the 

highest accuracy, 100% in this database, followed by 

AMIN, AMAX, and finally MCOR. It is also shown that 
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the two pre-frontal channels, Fp1 and Fp2, slightly 

outperform the other two frontal channels, AF3 and F4, in 

terms of classification accuracy.  
 

Table 2:  Accuracy of 3-class classification for different features by 

SVM with linear kernel, averaged over 5 subjects.  

 

5. DISCUSSION AND CONCLUSION 
 

In this paper, we investigated the characterization of 

working memory load using different classes of features 

extracted from frontal EEG signals. Discrimination 

between the different workloads induced during a reading 

task was found to be highly significant using the following 

time-based features: mean, energy, maximum cross-

correlation, and some spectral-based features such as 

approximate wavelet coefficients (5-level decomposition). 

The approximate wavelet coefficients and maximum cross-

correlation based features were proposed herein. The 

signal’s mean and approximate wavelet coefficient values 

appeared to increase when the workload increased.  This 

could be due to the fact that DC potentials of the cortical 

excitation shift in response to changes in attentional 

demands of the task. These shifts were shown to be 

proportional with the task level demand.  For the cross-

correlation feature, as the task load level increased, the 

cross-correlation with the baseline decreased, implying less 

similarity between the two signals. It is worth mentioning 

that in a preliminary experiment, all features except PLV 

were investigated across all the EEG frequency bands.  

The main result of the frequency-band investigation 

was that the delta frequency band appeared to carry the 

vast majority of the information relating to working 

memory load level in this experiment, even though only a 

few studies relating EEG and mental activity have 

analysed the delta band previously. So the EEG low 

frequency activity contains significant electrophysiological 

correlates of cognitive processing and should receive 

particular attention. Furthermore, it seems to be related to 

an increase in the participants’ internal concentration 

during tasks. 

We also specifically identified a few frontal channels 

which contain the most consistently discriminative 

information related to mental effort, so that a smaller 

number of EEG channels may be needed for future similar 

work. The results also suggest that relatively high 

discrimination among the load levels can be obtained with 

shorter windows.  

      In conclusion, obtaining high classification accuracies 

using the proposed features with shorter windows and a 

smaller number of channels is a step forward towards 

using these technologies in real-time and in more realistic 

environments, at low complexity. 
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Feature 

3 load level classification accuracy % 

Channel (number) 

ChFp1 

(1) 

ChFp2 

(30) 

ChAF3 

(2) 

ChF4 

(27) 

MEAN 100 99.82 97.54 97.01 

AMEN 100 100 97.01 97.89 

AMIN 100 99.64 98.06 97.19 

AMAX 97.19 98.24 95.26 97.71 

ENERGY 100 100 98.24 97.54 

MCOR 91.57 97.54 83.67 98.06 

1558


