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ABSTRACT 
We address the problem of estimating the path loss factor and 
its integration in RSS-based localization algorithms with 
wireless sensor networks. We propose an algorithm that 
relies on a stochastic characterization of the uncertainties in 
the propagation model. Due to that the path loss factor is 
unknown and the localization is only based on RSS 
measurements whose distances from the beacons to the target 
are also unknown. This is a problem for which we propose an 
iterative algorithm which estimates the factors, the locations 
and the distances. The algorithm is tested with three RSS-
based localization algorithms: circular trilateration, 
weighted centroids and ratiometric vector iteration. The 
results of our simulations show that the proposed algorithm 
gives good estimations of the path loss factors and gives 
improvements over the original localization algorithms. 

1. INTRODUCTION 

Many applications require accurate knowledge of sensor 
locations [1,2]. For instance, in environmental monitoring 
applications, it is meaningless to sense data without 
knowing the sensor locations. That is the case in precision 
agriculture, water quality monitoring, etc. 

Localization with Wireless Sensor Networks (WSN) 
requires intersensor measurement techniques (e.g., [1-8]). 
Based on the type of basic measurements these techniques 
can be broadly classified into three categories: Received 
Signal Strength (RSS), Angle of Arrival (AOA), and 
propagation time based. Among them, the RSS based 
localization algorithms have attracted great interest due to its 
simplicity and their impact on local power consumption, 
sensor size and cost is minimal. 
In this paper we are interested in distance-based localization 
where distance is estimated from the RSS measurements. We 
study the signal strength by means of a propagation model 
[3] that includes parameters like the transmitted and received 
power, signal frequency, propagation distance, antenna gain, 
etc. Among all parameters, the path loss factor (PLF) is one 
of the most important and an accurate knowledge of the PLF 
is necessary. Many techniques to estimate the PLF obtain the 
RSS through extensive channel measurements prior to 
system deployment where the distances are known [7,9,10], 
other techniques use online calibration without relying on 
distance measurements [8]. In this paper we introduce an 
algorithm to estimate the path loss factor that can be used in 
the localization algorithms. 

 
Figure 1 – Scheme of the simulated WSN for localization. 

In section 2, we state the localization problem and 
explain the simulation environment. The simulator that we 
have developed is intended to reproduce realistic scenarios. 
In section 3, we explain the propagation model putting 
emphasis on the uncertainties of the model and their 
stochastic character. These uncertainties may be due to 
distance errors, RSS measurement errors, insufficient 
knowledge of some parameters like antenna gains, etc. Also, 
the base equation s to be used in the development of the PLF 
estimation algorithm are presented. 

In section 4, we describe some RSS-based localization 
algorithms (e.g., trilateration, weighted centroids). In their 
description the effect of the PLF is emphasized. Particularly, 
the importance of the PLF on the distance estimations is 
clearly stated and it is formulated in such a way that it can be 
used in the algorithms. 

In section 5, we propose an algorithm that estimates the 
path loss factors and the sensor locations. It is developed 
considering several uncertainty sources that are identified in 
the propagation model. These uncertainties lead us to set up 
an iterative estimation algorithm which alternates between 
the PLF and the location of the target node. At the end of the 
algorithm we have the path loss factors, the location of the 
target and its distances to the fix nodes as a by-product. 

In section 6, we present our experiments, which are 
developed in two scenarios. In one of them we study the PLF 
estimation algorithm when there is no error in the intersensor 
measurements. In the other one, we perform localization 
experiments in outdoor locations close to a building. Our 
results on PLF show that the proposed algorithm performs 
very well even when there are errors in the intersensor 
measurements. The localization experiments show that we 
can achieve improvements on location estimation with 
respect to the case where no PLF compensation is made. 
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2. PROBLEM STATEMENT AND SIMULATION 
ENVIRONMENT 

Localization in Wireless Sensor Network (WSN) means the 
process of position estimation of wireless nodes. The result 
of the process is the knowledge of actual position of the 
nodes under localization.  The localization is performed by 
means of an algorithm that uses information from 
intersensor measurements. We work on distance-based 
localization where distance is estimated from the RSS 
measurements. The signal strength measurements are related 
to the propagation model where the PLF is a key parameter. 
An accurate knowledge of this parameter is necessary to 
obtain accurate estimates of the intersensor distance from 
the corresponding RSS measurements. The PLF depends on 
propagation conditions which may vary along time. The 
problem we are dealing with is to locate the position of 
nodes through the application of localization algorithms in 
which PLF compensation is a key issue.  

All experiments in this paper have been made by 
means of a simulation program for outdoor communications. 
For this purpose, we have developed a simulator with a 
typical scenario for localization systems with WSN as 
illustrated in Figure 1. The nodes, Fi {i=1, ,N}, are deployed 
with a communication range ‘R’. It is a multihop network 
with a specified maximum number of possible hops to 
guarantee that all packets can arrive to their destination. The 
communication subsystem emulates the IEEE 802.15.4 
radio communication standard [11]. Some parameters 
considered in the simulations regarding the standard are; 
antenna height, transmission power, carrier frequency (2.4- 
2.4835 GHz), direct sequence spread spectrum technique, 
O-QPSK modulation/demodulation,symbol/chip generation 
and detection, bit error rate estimation, packet format, etc. 
Other parameters such as atmospheric absorption, 
reflections (e.g., walls), diffraction, multipath propagation, 
additive noise, 3D building structures, etc. were also 
considered. 

In our simulator we distinguish between fixed and 
target nodes. We have considered that all fixed nodes are 
beacons whose exact positions are known. The targets can 
communicate with at least three/four beacons in order to 
make 2D/3D localization. Irrespective of the simulated 
topology (which is out of the scope of this paper) we assume 
that every packet sent by any node arrives to its destination, 
the sink node, which is connected to a central processing 
unit. Thus, our system operates in a centralized mode. The 
localization process works as follows: the target node sends 
a set of packets and the RSS are measured at the beacon 
nodes. Then, these RSS measurements are transformed into 
Received Signal Strength Indicator (RSSI) by emulating the 
Chipcon CC2420 radio [11,13] and they are incorporated in 
the data payload of the packets to be forwarded to the sink. 
In the central unit the positions of the beacons and the RSS 
measurements are used by localization algorithms to 
estimate the target localization. 
Our simulator also includes a module that simulates the Telos 
Rev. B motes from Crossbow [13]. The radiation pattern of 

the Inverted-F, antenna gain, allowed transmission power, 
etc. are considered in the module.  

3. PROPAGATION MODEL 

Our propagation model starts from a generalization of the 
Friis free space equation [3] expressed as 
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where x is the unknown emitter (target) position vector that 
must be estimated, si is the (known) position vector of the i-
th beacon node, N is the number of fixed nodes, pt and p’

i are 
the transmitted and the received power, λ is the wavelength, 
gt and gri are the gains of the transmitter and reception 
antennas and lit includes all losses (e.g., in the transmitter and 
receiver circuits). The PLF, αi, measures the rate at which pi 
decreases with distance. In free spaces this factor is αi=2 
being the Friis equation a particularization of (1). For 
simplicity, in (1) we take ||x-si||=di as the distance in meters 
and we assume that the noise level is very low, ni « pi. 

In real situations the free space conditions do not exist 
due to multipath fading, shadowing of the RF channel, 
complex interactions among the signal rays from different 
propagation paths (i.e., we may have reflections in several 
bordering surfaces like ground and walls), etc.  Among these 
conditions in this paper we are mainly interested in surface 
reflections because they are very common in WSN-based 
localization systems. The PLF covers deterministic 
parameters such as the height of the antennas, reflections and 
multipath propagation, etc [7]. A multi-ray model is here 
adopted since it is more realistic than the one based on a free 
space. In practical situations it has been reported [9,10] that 
αi takes values in a given range, e.g. αi ∈ [1,5]. For instance 
in [3], in urban areas it has been empirically found that 
αi∈[2.7,3.5], in some building line-of-sight situations 
αi∈[1.6,1.8], etc.  

We can express (1) in logarithmic form, so we have in 
(2) all magnitudes of (1) in decibels (dB). 
  ' '
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where P’i is the received power on the i-th node, Gti  and Gri 
are antenna gains for transmitter and i-th receiver node, Lit 
includes all losses, and  Ki contains all constants in (1) like 
pt, (λ/4π)2, etc. In equation (1) and (2) the distance di and the 
path loss factor, αi, are the unknowns that we must estimate 
for our localization algorithm. Unfortunately, these are not 
the only unknowns. For example, although we can know the 
radiation pattern of the antennas [13], the losses Lit in the 
electric circuits, etc, for real wireless devices it is unfeasible 
to know them with absolute accuracy, causing, thus, 
uncertainties in the model. Nevertheless, the most pernicious 
error sources for the localization algorithms are the errors 
introduced by the device in charge of measuring the RSS 
(P’i), and the errors in estimating the distances. These errors 
pose the problem of the necessity to estimate parameters for 
which we do not have enough information. Clearly, we have 
a set of N equations like (2) and 2N unknowns, di and αi. 

Our first step to tackle this problem is made by 
defining an “uncertainty” term that includes all errors in (2). 

1995



We consider that Ni is a stochastic term that picks up the 
effect of all error sources. We assume it to have a Gaussian 
probability density function (pdf). Now, rearranging the 
elements in equation (2), we get a simplified equation as 

  1010· ·logi i i iP d N                          (3) 
where Pi is a corrected term that includes the received power 
P’i, Ki and the nominal values of Lit, Gt, Gri. The Ni is an 
uncertainty term that integrates the errors in the knowledge 
of the RSS, di, Lit, Gt, Gri, etc. As we have stated previously, 
the path loss factor and the distance depend on complex 
interactions of several parameters in (2). In section 5, the 
joint estimation of all N pairs di and αi is addressed. 

4. RSS-BASED LOCALIZATION ALGORITHMS 
WITH WIRELESS SENSOR NETWORKS 

There is a great diversity of methodologies for localization 
algorithms based on RSS measurements. In this paper we 
are focused on some of the most promising of them. For 
each algorithm, we give a short description where the 
dependency with respect to the αi factor is highlighted 
through the term ( ki/pi)1/α

i thus opening the algorithms to 
use the estimated factors. 

4.1 Circular lateration and Multilateration 

The Circular Multilateration Algorithm (CLA) is one of the 
most widely suggested algorithms for localization purposes 
[1,2]. It uses the estimated distances di among the beacons 
and the target nodes to be localized. The algorithm derives 
from a simplified version of (1). 
  i

i

i ip k 
 x s  (4) 

where ki is assumed to be known and integrates all terms in 
(1) except the denominator term, being noise contribution is 
neglected. Rearranging the equation (4) we obtain (5). 
   2/22 2
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As we can see in (5), the term (ki/pi)1/α

i has dimension 
of distance. Since the real distance, d



, is an unknown the 
quotient in (5) plays a surrogating role, and it can be 
considered as the estimated distance, di=( ki/pi)1/α

i. Therefore, 
the more realistic its value is the better the algorithm 
performs. If we have N fixed nodes for the localization 
estimation then we can set out a system of equations where 
the estimation of the emitter position vector ‘x’ is given by 
(6), where CN-1=-2·(si-s1)T and 
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4.2 Weighted centroid 

The Weighted Centroid Algorithm (WCA) is a simple and 
efficient algorithm [1,2]. The location x of the emitter is 
estimated by means of an expression like (7). 
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where the wi are normalized weighting factors that act on 
the position of the fixed nodes, si’s. It is very common to use 
the received power (e.g., through the RSS’s) at the beacon 

nodes [4,10] to define the weights. In this paper, we make a 
definition of the wi that is based on the inverse of the 
estimated distances. In this sense, the closer a given fixed 
node is the more reliable it is considered for the estimation 
purposes. We have defined the wi factors as 
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Therefore, we have chosen to define them as a relation 
of Euclidian distances among fixed nodes and the target 
node. Recalling (4), we can replace the unknown distances in 
(8) by an expression in terms of ki and pi defined as: 
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4.3 Ratiometric vector iteration 

The Ratiometric Vector Iteration (RVI) algorithm is based on 
the estimation of relative distances instead of absolute [4] 
ones. Starting from an initial estimate (e.g., through CLA or 
WCA) it makes successive iterations in order to update the 
estimated locations, xj+1=xj+vj, such that xj+1 approaches x. 
Vector vj is a translation vector whose expression is 
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where gi and gij are normalized ratios expressed as (10). 
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The gij are given by a normalized ratio of distances 
from the estimated target location, xj, to the beacons position, 
si, at iteration ‘j’. The algorithm terminates when it arrives to 
a stationary point. Generally speaking, as the algorithm 
iterates, the closer the gij to the normalized surrogate 
distances, gi, the smaller the translation vector thus arriving 
to the stationary location point. 

5. PATH LOSS FACTOR AND LOCATION 
ESTIMATION ALGORITHM 

As we have seen before, all algorithms depend on the path 
loss factor, αi, in a decisive manner. For each localization of 
the target node we will have different radiofrequency paths 
among transceivers (fixed and target nodes). Then, we will 
also have different values for αi. Therefore, given that the 
path loss factor varies with the relative emitter-receiver 
position and the propagation phenomena, it is useful for 
localization to make a good estimation of αi. These 
estimations are used in (5), (9) and (10) in a preprocessing 
step previous to the location estimation with the algorithms. 

To start with, we write the equation (3) in matrix form: 
   P=C·α + N                                     (11) 

where C=diag([-10log10d1, ..., -10log10dN]) is a diagonal 
matrix of logarithmic distances, α=[α1,



, αN]T is the Nx1 

vector of path loss factors, P=[P1,


,PN]T is the Nx1 vector 

of corrected terms, N=[N1,


,NN]T is the Nx1 vector of 

uncertainties, and N is the number of beacons. Let’s define a 
distance vector as d=[d1,



,dN]T. The unknowns in (11) are 

vectors α and d. That is, there are 2N unknowns. 
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In the section 3, Ni was considered as a random variable 
with a Gaussian pdf, therefore from (11) we can assume N as 
a N-dimensional Gaussian distributed variable whose pdf is 

 
pN ∝ exp{-(p-C·α)T Q-1 (p-C·α)/2}             (12) 

where Q is the diagonal covariance matrix and (p-Cα)T is the 
estimation error vector. Initially, vector α and matrix C are 
unknown. Since there are N equations and 2N unknowns, we 
will find the optimum of α and d by means of an alternating 
maximization of (12) using a surrogating function defined as 
f(α)=(p-Cα)TQ-1(p-Cα).We can maximize (12) through the 
minimization of f(α) by means of an iterative method. We 
employ the Newton-Raphson method [12] over f(α) as 

1
1 ( )· ( )k k f


 α α α H α                 

(13) 
where H(α)=2CTQ-1C and  ∇αf(α)=-2(p-Cα)TCTQ-1 are the 
Hessian and the gradient of f(α), respectively. The algorithm 
is summarized as follows: 

1. Initialization. In the first step we consider that α is 
known, α0=[2,.. ,2]T. 

2. Update C. For k≥1 use the estimates αk-1 in a 
localization algorithm to locate the target and from 
the location estimate the distances to compute C. 

3. Update α, the path loss vector through (13) from 
the previously updated C. 

4. Alternate steps 2 and 3 until a prescribed number 
of iterations K. In our experiments K=3.  

Note that in the last iteration (K) we not only obtained 
the PLF vector (αe), but also the sensor locations (si

e) and 
their distances (de) to the target as a by-product. The PLF 
estimation error at the i-th sensor is measured as ∆i

α=αi
e-αi. 

6. SIMULATION RESULTS 

The simulations comprise two main groups. On the one hand, 
we have evaluated our algorithm (13) in two circumstance; a) 
the received power values and the distances are exactly 
known and b) the actual received power measurements are 
artificially affected by errors. For each sensor, independent 
uniformly distributed zero mean random errors, δi, are added 
to the actual power (pi) values, that is, we make pi(1±δi), ∀i. 
This is done previously to the iterations (13). With this 
simulation we emulate the errors due to uncertainties in the 
RSS measurements. On the other hand, we evaluate the 
location estimates by means of (6), (7) and (10) in a realistic 
outdoor scenario with and without using the estimated path 
loss factors with (13). The target node emission power is 0 
dBm, the received noise level is -110dBm, the receiver 
sensitivity is -90dBm and Q=10×INxN (I, identity matrix). 

6.1 Evaluation of the estimation of the path loss factors 

For these simulations we have created a virtual scenario (see 
Figure 2.a) with two nodes: one is fixed and the other one is 
a target. There are two parallel walls with reflection 
coefficient ρ=-0.9 and a floor with reflection coefficient ρ=-
0.2. The height over the terrain of the fixed node is 2 meters 
while for the target node it is 1.2 m. In this scenario there are 
four rays arriving to the receiving node, one is direct and the 
others are reflected on the two walls and the floor. Initially, 
the target node is located one meter apart from the fixed 
node. The distances from the target to the fixed node varies 

from 1 to 100 m. in steps of 25 cm. In such a controlled 
scenario we know the actual values of the PLF’s.  

(a) 

 (b) 
Figure 2 – Scenarios for the simulations in the estimation of α  (a) 

and estimation of localizations (b). 

 (a) 
Figure 3 – Results for the estimation of α. 

 
In Figure 3 we show the actual (dots) and the estimated 

(squares) path loss factors when the actual received power 
and distance values are exactly known. As we can see, the 
estimated factors are very precise. An interesting result is that 
the higher estimation errors are found for short distances. 
This is because for short distances (di≤5 m) the rays arrive 
with similar powers and the resulting signal suffers from high 
interactions.  Nevertheless, the absolute errors are very small. 

In Figure 4 we show the experiments in which the 
received RSS measurements are distorted. In Figure 4 the 
distortion is uniformly distributed in δ∈[-0.1,0.1] (10%). For 
each distance we have performed 100 runs and in the plots 
we represent the mean and the deviation (margin) of the ∆i

α . 
As we can see, when compared to the actual PLF values, the 
estimation method is very robust, the mean and deviations 
are quite independent from the distance. Similarly to the 
previous experiments, the estimation errors for short 
distances are higher than for long distances. The results 
suggest that our estimation algorithm for the PLF can benefit 
the localization algorithms for short and long distances. 

6.2 Location estimation 
In Figure 5 we show the location results in terms of the mean 
distance errors (over the four locations) with respect to the 
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Figure 4 – Path loss factor estimation error for δ∈[-0.1,0.1]. 

 
Figure 5 – Location estimation errors with and without the α. 

 
real locations achieved by the localization algorithms, with 
and without the estimated α. We have simulated an outdoor 
scenario (Fig. 2.b) with four 3 m high fixed nodes, which are 
placed in the vertices of a 20x20m square. The target node is 
0.5 m. high and its location varies along 151 positions that 
represent different difficulties for location estimation with 
regard to the relative location of the target and the fixed 
nodes. Broadly speaking, there are two types of results, with 
the estimatedα’s as explained in section 5 (solid lines) and 
without them. As we can see, the CLA shows the worst 
results. Still, it is difficult to decide whether the algorithm of 
section 5 really represents an improvement. The WCA and 
the RVI algorithm are clearly better than the CLA with and 
without using the PLF estimations. On average, for these 
algorithms the improvements are around 60%. 

7. CONCLUDING REMARKS AND FUTURE 
WORK 

We have introduced an algorithm to estimate the path loss 
factor and the location of targets nodes with wireless sensor 
networks. We have made considerations about the 
uncertainties in the propagation model and their 
consequences on the RSS measurements. These 
considerations have conducted us to set up an iterative 
algorithm that gives the location of the targets, the path loss 
exponents, and the distances as a by-product. The results of 
our simulations clearly suggest that the proposed algorithm is 
a good estimator of the PLF and leads to improve the RSS-
based localization algorithms. In our future work we will 
perform extensive experiments in real scenarios in an attempt 
to validate our simulation results. We are working through 

simulation and experimentation on the introduction of our 
algorithm as part of a tracking algorithm for which we can 
apply Kalman filtering, particle filtering, etc. Research work 
will also be conducted to integrate our algorithm in 
localization and tracking methods based on pattern matching. 
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