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ABSTRACT
In this paper, an adaptation method for structuring elements of mor-
phological filters is proposed. Morphological filters provide set the-
oretic image processing with structuring elements. The structuring
element specifies a shape of a local image structure that is elimi-
nated or preserved in a filter output. The adaptation of the structur-
ing element is crucial problem for morphological image processing.
For existing adaptation methods of structuring element, the train-
ing images that contain the pairs of a supposed input image and an
ideal output image are required. In this paper, we propose an adap-
tation method for the structuring element without preliminary train-
ing for image opening. Our approach is based on a regularization
technique for inverse problems of image recovery. The morpholog-
ical regularization is defined as a minimization of the cost function
which consists of a fidelity term and a regularization term that cor-
responds to a smoothness criteria of the structuring element. For
this minimization problem, the morphological filters are approxi-
mated as differentiable functions in order to employ a gradient de-
scent method. In experiments, we demonstrate the impulsive noise
reduction from texture images by using the proposed morphological
regularization.

1. INTRODUCTION

The mathematical morphology is a methodology of signal and
image processing based on set operations. Originally, the mor-
phological filters have been proposed for analysis of binary
images[1][2][3]. Later, the morphological filters have been ex-
tended to gray-level image processing methods and contribute to
low-level image processing tasks including image enhancement and
denoising[1][2]Maragos2.

For the morphological image processing, a gray-scale image is
transformed into a subset of the three-dimensional space, which is
spanned by the spatial and the intensity axes. The gray-scale mor-
phological operations are interpreted as set operations between the
subset of the image and structuring elements (SEs). In the gray-
scale image processing, an image is assumed to be a union of the
set of the SEs, which are translated in the three dimensional space.
The morphological opening[1][2][3], which is realized by a dilation
after an erosion operation, approximates the image as a union of the
SE while eliminating the small subsets of the image that cannot in-
clude the translated SE. The morphological closing that is the dual
operator of the opening approximates the complement of the image
with the SE. The small subsets of the complement that cannot in-
clude the translated SE are eliminated. Therefore, the opening and
closing can eliminate pits and valleys of the intensity surface of an
image and has been used for the impulsive noise reduction. In this
paper, the adaptation method for the SE of image opening is dis-
cussed. Obviously, the adaptation method for the opening can be
also applied to adaptation of the closing.

In morphological image opening for image denoising, the im-
age is assumed to be generated by a union of the translated SEs.
Since the SE specifies which image local structures are eliminated
or preserved, the choice of the SE is a crucial problem for the mor-
phological denoising. However, the SEs of the morphology are
usually specified as simple structures, such as squares, circles and
rhombuses in many applications. For binary images, the optimum

SE is obtained by simple and small structures with morphological
operations[4]. In order to get a good denoising result for a gray-
scale image, the gray-scale SE have to be adapted to the local struc-
tures of the image.

For the SE adaptation, several approaches have been proposed.
In Ref. [5] and [8], the optimization methods for a class of the
rank-order filters have been proposed. Erosion and dilation can be
optimized by using these methods, since the both filters are included
to the class of the rank-order filters. In these methods, the rank
function is introduced to approximate the filters as a differentiable
functions. In Ref. [6], the iterative adaptation method that is similar
to the leas mean square (LMS) algorithms is proposed. The SE
for the image opening is adapted for image denoising by using the
LMS-like algorithm. In Ref. [7], the genetic algorithm is employed
for the optimization of the SE.

In these existing approach, the SE adaption is performed with
a training set that consist of pairs of a supposed corrupted image
and an ideal output image of the morphological filter. The objec-
tive function that is minimized during the preliminary training is
defined as an error between the ideal output and the filtered image.
The supposed corrupted image is generated by adding a noise to the
ideal image. Noisy images, of which characteristics are similar to
the ideal image that is employed for the preliminary training, can
be well denoised by the adapted SE. However, the training set that
consists of the noisy and ideal images is not always obtained for
actual denoising application.

In this paper, we propose an adaptation method for the SE of
the image opening without preliminary training. Our approach is
based on a regularization method for linear inverse problem for im-
age recovery. In the regularization of images, the smoothness of
the image is assumed and is represented by a penalty in the cost
function[11][12]. The linear inverse problem is solved by the mini-
mization of the cost function that is defined as a sum of two terms, a
fidelity term and a regularization term. In our approach, the regular-
ization term is defined for the morphological image model as well
as the regularization for the linear image model. The regularization
term is imposed on the recovered image for linear image generative
models. For the morphological regularization, the regularization
term is defined as a function of the SE, since the SE is supposed to
represent the local intensity surface of the clean image.

In the next section, the image opening is briefly explained. In
Sect. 3, we introduce the morphological regularization for image
opening. In order to apply a gradient-based minimization for the
morphological regularization, the morphological filters are approx-
imated as differentiable functions is Sect. 4. Finally, we show sev-
eral examples of the texture denoising to demonstrate the advantage
of the SE adaptation by using our approach.

2. DENOISING BY MORPHOLOGICAL OPENING

In this paper, the observed image { fx}x∈I, where I denotes the set
of two-dimensional coordinates of image pixels, is assumed to be a
sum of a clean original image g and an additive noise e as

fx = gx + ex. (1)

The problem of the denoising is to estimate g from the observation
f . In the morphological opening, the approximation ĝ of the clean
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image g is generated by the dilation[1][2][3] of an image d,

ĝx =
∨
y∈A

dx+y + sy (2)

where
∨

y∈A denotes the maximum value of the elements with re-
spect to the set A. {sy}y∈A is the SE for the opening. A denotes the
set of the coordinates that are supported by the SE. In this operation,
the SE corresponds to the smallest component of the image. From
the set-theoretic point of view, the original image g is assumed to
be composed as a union of the SEs that are translated in the three-
dimensional space, which is spanned by the horizontal and vertical
axes of the pixel coordinates and the intensity axis. For the estima-
tion of ĝ, d specifies the intensity offset of the SEs that are allocated
to each coordinate. For the morphological opening, the intensity
offset d is estimated by a morphological erosion [1][2][3] of the
observed image f as

dx =
∧
y∈A

fx−y− sy (3)

where
∧

y∈A denotes the minimum value of the elements with re-
spect to the set A. Hereinafter, the image obtained by the open-
ing of { fx}x∈I with the SE {sy}y∈A is denoted as {Os fx}x∈I. If
the SE, which cannot be included in the additive noise e and can
represent the original image g with the dilation in (2) exactly, is
known, the noise components are eliminated by the erosion process
in (3), and the following dilation process (2) can only approximate
the original image components. However, the ideal SE is usually
unknown for image denoising. In this paper, we propose the adapta-
tion method for the SE for image denoising with the morphological
opening from the noisy observation.

3. MORPHOLOGICAL REGULARIZATION

In this section, we briefly overview the regularization for the linear
inverse problem. Let us suppose that an image f , which is a vector
that consists of image pixels, is obtained as

f = Hg+e (4)

where H denotes an observation process. g is a clean original im-
age. e indicates a noise that appears in the observed image. In the
inverse problem estimating g from the observation f , the noise com-
ponents e have to be eliminated. Moreover, this inverse problem is
usually ill-posed, some constraints that are obtained from the prior
information about the original image g are imposed on the estima-
tion. In many image recovery applications, the inverse problem of
estimation g is reduced to the regularization problem

min
g

‖ f −Hg ‖2
2 +λR(g) . (5)

The first term of the objective function is a data fidelity term that is
defined as a squared error between the recovered image g and the
observation f . The second term is a regularization penalty that is
imposed on the recovered image g. R(g) is a regularization penalty
in order to avoid overfitting of Hg to f . λ is a regularization param-
eter. In many image recovery algorithm, the regularization penalty
that is defined based on a smoothness assumption of images.

When the penalty function is a quadratic function ‖ Γg ‖2
2, this

regularization corresponds to a Tikhonov regularization. In the im-
age processing, Γ is chosen as a Laplacian operator to reduce fluc-
tuations that include noises in the recovered image. In the total
variation regularization[11][12], the penalty term is defined from
the absolute sum of discrete gradients at every coordinates. In these
regularization, the surface of the image intensity is assumed to be
smooth, and the penalty term is small for the clean image.

In this paper, we also define the minimization problem of the
denoising with the opening as well as the regularization for the lin-
ear inverse problems. The objective function of the morphological

opening is defined as

Q({sy}y∈A) = E({sy}y∈A)+λP({sy}y∈A). (6)

The first term of the right side of Q denotes the fidelity term that
is defined as a difference between the opened image Os f and the
noisy observation f . The fidelity term is hence the function with
respect to the SE s. The second term is a regularization penalty that
is imposed on the approximation to avoid overfitting of the opened
image Os f .

In this study, the approximation error is measured by an abso-
lute error between the opened image Os f and the input image f
as

E({sy}y∈A) = ∑
x∈I

| fx−Os fx|. (7)

Due to the antiextensivity of the opening, the opened image satisfies
Os fx ≤ fx at every coordinates x. So, the absolute error can be
reduced to

E({sy}y∈A) = ∑
x∈I

fx−Os fx. (8)

For morphological opening, we also assume the smoothness of
the opened image Os f that is the estimation of the clean original
image. As seen in the dilation part of the morphological opening in
(2), an image is approximated by the superimposition of the trans-
lated SEs. Local intensity variations of the image are hence approx-
imated by the SE of the opening. In order to simplify the penalty
function, we impose the smoothness penalty on the SE instead of
the opened image itself. To define the penalty of the smoothness on
the SE, the relationship between the SE and the opened image Os f
should be regarded to restrict the feasible solution space. First, the
opened image Os f is invariant with respect to the average over all
elements of the SE. So, we suppose that each element of the SE is
non-positive as

sy ≤ 0 ∀y ∈ A. (9)

This non-positivity constraint of the SE does not restrict the opened
image Os f and contributes to restrict the solution space of the SE.
Second, the opened image Os f is invariant with respect to the trans-
lation of the SE. In order to restrict the solution space of the SE,
we suppose that the maximum element of the SE always appears at
the center of the region A that is supported by the SE. Under the
non-positivity constraint, all elements of the smoothest SE are zero.
The smoothness of the SE is hence measured as the distance from
the smoothest SE as

P({sy}y∈A) = ∑
y∈A

s2
y. (10)

In this definition, the distance between the SE and the smoothest
SE is defined as an Euclidean norm. Since the maximum element
is supposed to appear at the center of the SE and is zero for min-
imization of this penalty, this penalty approximates the sum of the
squared differences between the neighboring pixels.

By addition of the approximation error term and the smoothness
penalty of the SE, we have an image approximation problem with
the opening as

min
{sy}y∈A

∑
x∈I

( fx −Os fx)+λ ∑
y∈A

s2
y

subject to sy ≤ 0 ∀y ∈ A, syc = 0 (11)

where yc ∈ A denotes the supposed center of the SE. In the above
morphological regularization, the regularization parameter λ is the
real number in [0,+∞]. In order to restrict the range of the parame-
ter, the penalty of the smoothness is realized as a constraint for the
minimization as

min
{sy}y∈A

∑
x∈I

( fx −Os fx)

subject to ∑
y∈A

s2
y ≤ σ2, sy ≤ 0 ∀y ∈ A,syc = 0. (12)
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In this problem, the parameter σ that specifies the tolerable varia-
tion of the SE is introduced instead of the parameter λ . The image
approximation is the problem that seeks the SE that minimizes the
approximation error under the restriction for the variance of the SE.
Obviously, the approximation error of the opening is zero, when σ
is large enough. Let us suppose that the image intensity fx is a
value in the range [0,M], where M is an integer. If syc = 0, which is
the center of the SE, and the other elements of the SE are −M, the
approximation error of the opening becomes zero. In this case, the
squared norm of the SE is (N −1)M2 where N is the number of the
elements in the SE. Therefore, σ can be restricted to a value in the
range [0,

√
N −1M]. For denoising, the appropriate σ is obtained

by seeking a value in this range. In next section, the gradient-based
minimization is applied to minimize the fidelity term under the con-
straints of the SE.

4. GRADIENT DESCENT ALGORITHM FOR
MORPHOLOGICAL REGULARIZATION

4.1 Approximation of the morphological opening
One of the major difficulties that arise in the optimization of the
morphological filters is that the max (

∨
) and min (

∧
) are not dif-

ferentiable with respect to the elements of the SE. Since the cost
function that is minimized during the optimization of the SE is not
also differentiable with respect to the SE, a gradient based optimiza-
tion is difficult to apply the optimization directly. In Ref. [8], the
rank functions that include the max and min functions are approx-
imated by the differentiable functions for optimization of the rank
filters. For construction of the morphological filters, only the max
and min functions are required. In Ref. [9] and [10], the max and
min functions are approximated by generalized– f means. In this
paper, we also approximate the max and min functions as differ-
entiable functions with the generalized– f mean. The erosion (3),
which specifies the offsets of the opening, is approximated as

d̂x = −T log ∑
y∈A

exp(−( fx−y− sy)/T ) . (13)

When T → 0, d̂x converges to the true eroded image dx. Conse-
quently, the opening is approximated as

Ôs fx = T log ∑
y∈A

exp
((

d̂x+y + sy
)
/T

)
. (14)

The approximated opening Ôs f is differentiable with respect to any
element of the SE. For the bounded input f and SE, the error be-
tween the true opening Os f and Ôs f is bounded as

| Ôs fx−Os fx |< T logN (15)

where N is the number of the elements of the SE. This bound can be
found from the bounds of the approximation errors of the max and
min functions. By using the approximation of the opening, the cost
function in (12) can be approximated as

Ê = ∑
x∈I

(
fx − Ôs fx

)
. (16)

Since the approximation of the opened image is differentiable with
respects to the elements of the SE, the approximation of the objec-
tive function is also differentiable. The partial differential of the
objective function can be derived and is used for the gradient based
optimization.

4.2 Gradient descent under the convex constraints
The update rule of the gradient descent for the SE adaptation is

si+1 = PBPC

(
si −h∇Ê

)
(17)

where h is a step size for i-th iteration. ∇Ê is the gradient of the
approximated cost function Ê that is derived in the previous subsec-
tion. si denotes the vector representation of the SE at i-th iteration.
PC denotes the operator that projects an SE on the convex set, of
which any element {cy}y∈A satisfies

cy ≤ 0 for ∀y ∈ A,cyc = 0. (18)

This projection is realized by replacing the center of the SE and the
elements of which values are larger than zero with zero.

PB denotes the operator that projects the vector of SE onto the
l2 ball

B = {x| ‖ x ‖2≤ σ} (19)

where ‖ x ‖2 denotes the l2 norm of the vector x. This projection
can be realized as

s←

{
σ s

‖s‖2
for ‖ s ‖2≥ σ

s otherwise.
(20)

In our implementation of the gradient descent, the direct search
method is employed for the line search of the optimum step size
h at each iteration. The iteration searches the SE that yields smaller
objective function at each step, however, this iteration converges to
a local minimum or saddle point due to the non-convexity of the ob-
jective function. After the convergence, the trained SE is employed
for the denoising.

5. EXAMPLES OF TEXTURE DENOSING

In this section, we provide several examples of the regularization-
based SE adaptation for image denoising. We employ texture im-
ages that are chosen from the Brodatz texture database. Since the
texture image consists of micro structures that repeatedly appear,
the morphological image generative model can well represent the
texture images. The chosen textures D15, D16 and D84 are shown
in Fig. 1, 2 and 3, respectively.

The morphological opening can eliminate positive noises that
cannot include the translated SE. In order to generate the nosies, the
intensities of the pixels, which are in the range [0,255], are repre-
sented in binary numbers of 8 bits. Each bit that indicates zero is
flipped with the error probability p. The generated noise is equiva-
lent to the noise due to error in a binary asymmetric channel. The
error probability p is specified as 1/8 for the experiments.

The size of the SE is specified as 3× 3 pixels for all images.
The appropriate choice of the weight σ will depend on the noise
level and the textures. In order to observe the relationship between
the trained SE and σ , σ is initially specified as zero and is increased
to the limit while performing the optimization iteratively. Each op-
timization of the SE is started with the initial SE that is obtained by
the previous optimization. Obviously, when σ is specified as zero,
the optimization yields a flat square SE, of which elements are zero.
The approximation is repeated while increasing σ by 50 until the
largest σ = 800. The SE that can perfectly recover the original im-
age consists of the element that is zero at the center, other elements
are smaller than or equal to −255. In this case, the l2 norm of the
SE is larger than 721. So, it is expected that the SE at the maximum
σ = 800 recovers the input image without errors. Prior to denoisng,
a mean absolute error (MAE) between a noisy input image and an
original image is supposed to be estimated. Under this prior, we
seek the appropriate σ for denoising. We assume that noise compo-
nents will perfectly eliminated while preserving the original image
at appropriate σ . Under this assumption, we accept the opening
result, of which absolute error to the noisy input is closest to the
MAE that is prior estimated, as the denoising result. The denosing
is hence performed without the clean original image, with estimated
MAE of the noisy image.

In Fig. 1, 2 and 3, the opening results with three tolerable vari-
ations, which include σ = 0, quasi-optimum σ estimated from the
MAE. For comparison, the denoisng results that are obtained by a
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Figure 1: Denoising of the texture D15. Upper left: Relationship between the approximation error and the tolerable deviation σ . Lower left:
Relationship between MSE of opened image and σ . Right: Original, noisy and opened images. SEs that obtain the opened images are also
shown.

Figure 2: Denoising of the texture D16. Upper left: Relationship between the approximation error and the tolerable deviation σ . Lower left:
Relationship between MSE of opened image and σ . Right: Original, noisy and opened images. SEs that obtains opened images are also
shown.

median filter, which is widely applied to impulsive noise reduction,
are also shown. The window size of the median filter is specified
as 3×3 pixels. In each figure, the relationships between σ and the
approximation error, which is defined as the difference between the
input noisy image and the result of the opening is also depicted.
The relationship between σ and the mean squared error (MSE) of
the opening result is also shown. Each MSE is measured between
an opening result and the original image. In each case, the esti-
mated quasi-optimum σ exists close to the optimum parameter σ
that yields the smallest MSE. We see that the approximation error
decreases along with the increment of σ , which specifies tolera-
ble variation of the SE. Ideally, the input image is perfectly recon-
structed with the largest σ . However, the approximation error does
not converge to zero in the case of D16 in Fig. 2, since the iteration
of the gradient descent converges to the local minimum.

Comparing with the opening results with flat square SEs and the
adapted SEs, the MSEs of the output results obtained by the adapted
SEs are smaller than the results with the flat square SE. We see that
the SEs that are adapted to the input images reflect the shape of the
micro structures of the texture images. The adapted SEs well ap-

proximates the local structures of the images while eliminating im-
pulsive noises for three texture image. Comparing with the results
obtained by the median filter, the small details, which are preserved
in the results of the adapted SE, are corrupted by the median fil-
tering. The adaptation of the SE successfully decreases the errors
of the denoising for all texture images while preserving the micro
structures of the textures.

When the parameter σ exceeds the optimum value, the SEs
shrink along with increment of σ . In the opening results with σ that
is larger than the optimum value, we see the small noise components
that is approximated with the adapted SE due to the overfitting to
the noisy images.

6. CONCLUSIONS

In this paper, we propose an adaptation method for the SE of the
opening filter. In the proposed method, the adaptation is achieved
by the minimization of the cost function that is defined as the sum
of the fiderity term and the smooth penalty for the image, as well
as the regularization for linear inverse problems. The regularization
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Figure 3: Denoising of the texture D84. Upper left: Relationship between the approximation error and the tolerable deviation σ . Lower left:
Relationship between MSE of opened image and σ . Right: Original, noisy and opened images. SEs that obtains opened images are also
shown.

penalty, which is defined to represent the smoothness of images, is
imposed on the SE of the opening. In order to minimize the ob-
jective function, the opening and its objective function are approx-
imated as the differentiable functions. By using these approxima-
tions, the minimization task is achieved by the gradient descent. In
experiments, we demonstrate that the proposed approach can adapt
the SEs by using only noisy input images and improve the denoising
capability of the opening.

The proposed approach can also be applied to the morpholog-
ical closing, that is complementary operation of the morphological
opening. The experiments that are demonstrated in Sect. 5 are lim-
ited in denoising for positive noises. The pair of the closing and
the opening can be applied for noises that include both of the pos-
itive and the negative values. The sequence of erosion and dilation
operations is referred to as an alternative sequential filter[3]. The
adaptation of the SE for the alternative sequential filter is one of
future topics. In many existing image processing methods based
on the mathematical morphology, the SEs are specified as combi-
nations of several simple SEs. The SEs that are adapted through
the proposed approach will contribute to the improvement of the
performance of the existing morphological image analysis. The ap-
plications of the adaptation of the SE, including the image analysis
and image recovery are future topics.

REFERENCES

[1] J. Serra, IMAGE ANALYSIS AND MATHEMATICAL
MORPHOLOGY, Academic Press, 1982.

[2] P. Maragos and R. W. Schafer, “Morphological filters – part
I: their set-theoretic analysis and relations to linear shift-
invariant filters, ” IEEE Trans. on Acoust. Speech and Sig.
Proc., vol. ASSP-35, no. 8, pp. 1153-1169, Aug. 1987.

[3] P. Maragos, “Morphological filtering for image enhancement
and feature detection, ” Chapter 3. 3 for the Book: The Image
and Video Processing Handbook, A. C. Bovik Ed., Elsevier
Academic Press, pp. 135-156, 2005.

[4] D.Schonfeld, “Optimal strcuturing elements for the morpho-
logical pattern restoration of binary images, ” IEEE Trans. on
Pattern Anal. Mach. Intell., vol. 16, no. 6, pp. 589-601, Jun
1994.

[5] P. Salembier, “Adaptive rank order based filters, ” Signal Pro-
cessing, vol. 27, pp. 1-25, 1992.

[6] P. Salembier, “Structuring element adaptation for morphologi-

cal filters, ” Journal of Visual Communication and Image Rep-
resentation, vol. 3, no. 2, pp. 115-136, 1992.

[7] N. R. Harvey and S. Marshall, “The use of genetic algorithms
in morphological filter design, ” Signal Processing: Image
Communication, vol. 8, pp. 55-71, 1996.

[8] L. F. C. Pessoa and P. Maragos, “MRL-Filters: a general class
of nonlinear systems and their optimal design for image pro-
cessing, ” IEEE Trans. on Image Processing, vol. 7, no. 7, pp.
966-978, July 1998.

[9] M. Nakashizuka, “A design method for morphological filters
with approximations of Min/Max operators, ” Proc. on Asia-
Pacific Signal and Information Processing Association Annual
Summit and Conference, Sapporo, Oct. 2009.

[10] M. Nakashizuka, S. Takenaka and Y. Iiguni, “Learning of
structuring elements for morphological image model with a
sparsity prior, ” in Proc. IEEE Int’l Conf. on Image Process-
ing, Hong Kong, Sep, 2010.

[11] L. I. Rudin, S. Osher, and E. Fatemi,“Nonlinear total variation
based noise removal algorithms,”Phys. D, vol. 60, no. 1-4,
pp. 259-268, 1992.

[12] A. Chambolle,“ An algorithm for total variation minimiza-
tion and applications,”Journal of Mathematical Imaging and
Vision, vol. 20, pp. 89-97, 2004.

1692


