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ABSTRACT 

In this paper, we propose a 1 Gbin/s context-based 

adaptive binary arithmetic coding (CABAC) encoder 

architecture for beyond-HDTV applications. CABAC is a 

crucial part in H.264/AVC main and high profiles that 

provides a great compression ratio at the expense of high 

computational complexity. And it is also considered as a 

very efficient coding method in the developing high-

efficiency video coding (HEVC) standard.  We try to 

accelerate the CABAC encoder to provide a high 

throughput to meet the requirement of beyond-HDTV video. 

Our design includes the binarization, context modeling and 

binary arithmetic encoding (BAE) parts and achieves a 

throughput of 4 bins per cycle. The synthesis result using 

SMIC 90nm shows that the logic gate count is 36.2K in all 

and the encoder engine can work at a maximum frequency 

of 279MHz. Thus the overall throughput can reach over 1 

Gbin/s. In our design, the 460 contexts are assigned to 6 

SRAMs to attain efficient context modeling. And the 

binarization part is also optimized to enhance the 

throughput with low hardware cost. 

1. INTRODUCTION 

Context-based adaptive binary arithmetic coding (CABAC) 

is introduced in H.264/AVC video coding standard as an 

efficient entropy coding tool. It is remarkable for providing 

a better compression ratio than most other encoding 

algorithms. For example, it achieves an average more 9%-

14% of bit rate saving than the baseline entropy coding 

method in H.264, CAVLC. And CABAC is still the 

efficient entropy coding method considered in the 

developing High-Efficiency Video Coding (HEVC) 

standard, which is targeted at next-generation HDTV and 

beyond-HDTV displays. 

On the other hand, CABAC requires a significant amount 

of logic and increases the hardware implementation cost on 

a large scale. Due to the syntax-element-level dependency 

as well as bit-level dependency, it is also difficult to 

parallelize, thus the throughput of a single CABAC 

encoding engine is limited. With the emergence of QFHD 

(2160p) and Super Hi-Vision (4320p) video, the throughput 

requirement is much higher and the real-time CABAC 

encoder engine is much harder to design. The bin rate for 

HDTV (1080p) is 40 Mbps at most. As to the QFHD and 

Super Hi-vision data, it can reach a very high bin rate of 

above 1 Gbin/s. This makes the design of CABAC encoder 

very challenging and crucial in the whole video encoding 

system. 

In recent years, many papers have presented CABAC 

encoder architectures for throughput accelerating and 

power saving. Some designs are for 1 bin/cycle, such as [3-

5] and [8] while some adopt multi-bin architecture, like [6], 

[7], [9] and [10]. 

It can be seen from the trend that the designs are 

transferring from 1 bin/cycle to multi-bin/cycle to provide a 

higher throughput. The works of [3] and [8] try to enlarge 

the working frequency as much as possible by designing the 

encoder with maximum pipelining. And the synthesis 

results using 0.13 CMOS technique indicate a max 

frequency of around 600Mbin/s at around 600 MHz. While 

this is still not enough for the throughput requirement, and 

the high clock frequency also brings difficulties in applying 

these architectures in consumer electronics. 

But many problems come out with multi-bin architecture. 

Firstly, the critical path becomes longer. The BAE logic is 

duplicated and cascaded sequentially to process multiple 

bins in one cycle. Even though efficient pipeline is 

employed, the critical path increases and the maximal 

frequency decreases substantially. For example, the 

maximal frequency of 1 bin/cycle BAE is 625 MHz in [2], 

while 344 MHz and 192 MHz respectively for 2 and 4 

bin/cycle BAE. Secondly, SRAM based context modeling 

has very low efficiency to provide multi-bin/cycle. In [7] 

and [10], CABAC is designed as 2.37 bin/cycle, while the 

actual throughput is only 1.3 and 1.42 due much to the 

inefficient context table access. At last, to achieve good 

throughput, several CABACs may be used sometimes. 

CABAC in [6] uses two BCMs (binarization and context 

modeling) and one 4 bin/cycle BAE to achieve an overall 

throughput of 4bin/cycle. And CABAC in [9] applies four 

BCMs and two 2 bin/cycle BAE to achieve 3.88 bin/cycle 

and better working frequency. This will surely increase the 

hardware cost on a large scale. Furthermore, the multi-

engine solution either requires a frame to be partitioned into 

slices (slice parallelism) which degrades coding efficiency, 

or results in a longer encoding delay by employing frame 

parallelism [11]. 

In order to meet the throughput requirement and save 

hardware at the same time, a 1Gbin/s CABAC encoder is 

proposed. In this work, 4-level pipeline is utilized in a 4 

bin/cycle BAE to enlarge the throughput of this part. The 

460 contexts are assigned to 6 banks of SRAMs and the 

SRAM reading and updating control logic are developed to 
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achieve high context modeling efficiency as much as 4.5 

bin/cycle on average. The binarization part is also 

optimized to enhance the throughput. 

The rest of the paper is organized as follows. Section II 

provides an overview of CABAC encoding mechanism and 

previous design works. Section III introduces the proposed 

CABAC encoder architecture. Then, the synthesis result 

and comparison are given in Section IV. And finally the 

conclusion is drawn in Section V. 

2. OVERVIEW OF CABAC ENCODER 

CABAC in H.264/AVC can be described as three major 

steps: 1) Binarization, 2) Context Modeling (CM) and 3) 

Binary Arithmetic Encoding (BAE). Fig. 1 shows the three 

stages in H.264 standard.  

 

2.1 Binarization 

In the binarization stage, the non-binary valued syntax 

elements (SE) are mapped to a corresponding binary string. 

There are five kinds of binarization schemes defined in 

H.264: Unary (U), Truncated Unary (TU), Exp-Golomb 

(EGk), Fixed-length (FL) and Unary Exp-Golumb (UEGk). 

Some kinds of SEs have their special way of binarization. 

The output of the binarization process is the mapped bins of 

the SEs and the context indexes for the bins which are used 

in the context modeling stage to fetch the right probability 

mode. 

Since binarization has no problem in providing a 

throughput of 2 bin/cycle on average, the previous works 

focus not much on this part. And sometimes several 

binarization units are applied to generate good throughput, 

such as [6] and [9]. 

 

2.2 Context Modeling 

There are three modes in the binary arithmetic encoding 

stage: regular mode, bypass mode and final mode. In the 

regular encoding mode, a context model referred to by 

context index is used to assign a proper probability mode 

for each bin. The probability mode is used to encode the bin 

in the BAE stage and the context model for this bin should 

also be updated according to the bin’s value. When bypass 

mode is selected, a predefined equal probability model is 

used to process the bin. And in the final mode, the bin is 

predicted to be 0 with the highest probability. 

CABAC in H.264 adopts 460 context models to attain 

accurate probability estimation, and each context model is 

made up of one {MPS, pStateIdx} pair. Due to the large 

memory area to store these context models, SRAM other 

than register is usually chosen to implement the context 

table storing the context models, such as [9] and [10]. The 

synthesized area of context modeling and BAE 

implemented by SRAM is 29%-35% compared with 

register based one according to [2]. 

Data dependency exits in this part because the context 

modeling of the current bin may use the updated context of 

the previous bins. So logic should be developed to take care 

of the hazard cases. 

 

 

Figure 1 – CABAC encoding steps diagram 

Table 1 – Updating of the interval 

Prediction 

correctness 

Update of 

Range 
Update of Low 

Miss(Bin!=MPS) rLPS Low+Range- rLPS 

Hit(Bin==MPS) Range- rLPS Low 

 

In one bin/cycle architectures, a two-port SRAM (one read 

and one write ports) is used to perform context reading and 

updating at the same time, and full pipeline design can be 

easily employed, such as [5]. And simple control scheme 

like forwarding can be applied in the pipeline to remove the 

data hazard caused by the data dependency. Thus steady 

throughput of one bin/cycle in the pipeline is easy to 

achieve except for the SRAM initialization process. 

While for multi-bin/cycle designs, context access becomes 

more than 1 bin/cycle. As a result, one two-port SRAM 

can’t meet the reading and updating speed requirement. It is 

simulated in [2] that the context table can be subdivided 

into several groups and stored in different SRAMs to add 

the SRAM ports. And better performance can be obtained if 

more SRAMs are used. In [10], the context table is divided 

into 2 banks and 1.42 bin/cycle on average is achieved with 

2 bin/cycle BAE. 

 

2.3 Binary Arithmetic Encoding 

BAE is used to encode the bins based on their probabilities. 

The principle is a recursive selection of sub-division of an 

interval. The interval is set as [0, 1] originally, then divided 

into two according to the probability mode, and updated to 

be one of the two intervals based on the correctness of the 

prediction. Thus the encoded stream can be decoded using 

this interval information. 

The interval is defined by the low bound (Low) and length 

(Range). The updating of the interval (Low and Range) is 

defined in Table 1, where the value of rLPS is indexed by 

pStateIdx read from context modeling. As the encoding 

process goes on, the value Low become more and more 

precise, and range is always kept within [0xl00, 0xlFF] by 

shifting the new Range value. The shift operation is called 

renormalization. The bits of Low are also shifted out little 

by little and packed as the final bit stream. 

The update process of the value Range and Low and the bit 

packing process can be pipeline without stall, most designs 

adopt 4-stage pipeline in this part. And as Fig. 2 shows, 

several units are cascaded to form multi-bin/cycle 

architecture. The timing performance is related to the 

cascade levels. The relationship between the throughput 

and the cascade levels is shown in Fig. 3, where the 

synthesis utilizes SMIC 90 nm. 
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Figure 2 – Pipeline architecture of multi-bin BAE 

 

Figure 3 – The relationship between throughput and cascade levels 

 

3. PROPOSED CABAC ENCODER 

ARCHITECTURE 

Fig. 4 depicts the block diagram of our proposed CABAC 

encoder architecture. It is composed of a binarization unit, a 

6-SRAM-based context modeling unit, a 4-stage pipelined 

BAE and two parallel-in-serial-out (PISO) modules. 

 

3.1 4 bin/cycle binary arithmetic encoder (BAE) 

The pipeline architecture describe in Fig. 2 is used in our 

design of BAE to enlarge the throughput as much as 

possible. Four Update Range and four Update Low logic 

units are cascaded to achieve a throughput of 4 bin/cycle in 

BAE part. 

The first pipeline stage in BAE is to generate the four rLPS 

values for each bin according to the value of pStateIdx from 

the context modeling module. One of these four values is 

selected out in Update Range stage and will be used as the 

rLPS value in Table 1 for interval update. The Update 

Range stage will update the value of Range four times for 

the four bins in a cycle and generate the information needed 

for the update of Low. Then Low is updated in the next 

stage and the Bit Pack stage will pack the output bit of 

Update Low into the output stream. 

 

3.2 SRAM based context modeling (CM) 

To enhance the throughput of CABAC, the design of CM 

should also provide a throughput of over 4 bin/cycle on 

average. 6 two-port SRAMs are used in our design to store 

the 460 contexts to make efficient context access possible. 

The 460 contexts are divided into 6 groups according to the 

feature of context access order. 

 

Figure 4 – Proposed CABAC encoder architecture 

Table 2 – Examples of group of contexts 

SRAM groups 1 2 3 4 5 6 

mb_type (SI) 3-5 6 7 8 9 0-2 

transform_size  399     

pre_mode   64-66 67 68 69 

coded_block_flag 

(16x16 DC) 
    85-88  

significant_ flag 

(16 x16 DC) 
 106…  107…  105… 

last _flag 

(16 x16 DC) 
166…  167…  168…  

abs_level_minus1 

(16 x16 DC)(first bin) 
229 230 231 227  228 

abs_level_minus1 

(16 x16 DC)(other bins) 
233 234 235  236 232 

ref_idx 56 57 58 59 54 55 

Mvd 40 41 42 43 44 45-46 

 

The throughput of CM depends much on the grouping of 

the contexts. In bad grouping, if two adjacent different 

contexts are store in the same SRAM, only the context for 

the first bin can be read out, because SRAM has only one 

read port. Good grouping will try to avoid this kind of 

hazard. CABAC in [2] groups the contexts based only on 

the context index (CtxIdx). If they group the contexts into b 

banks, they use “CtxIdx % b” to determine the group. The 

design of [5] divides the contexts into 2 banks. The CtxIdxs 

of sig_coeff_flag and last_sig_coeff_flag types are 

separately assigned into two banks. And for other CtxIdxs, 

they assign them to “CtxIdx % 2”-th bank. 

In our design, the contexts are grouped by taking the access 

feature of each context index into consideration. As Tabel 2 

shows, 0,1and 2 are assigned to group 6, because only one 

of these three will be used for one MB and they will never 

be required in the same clock cycle. Contexts indicated by 6, 

7, 8, 9 are assigned respectively to group 2 to group 5 

because they may be accessed one following another.  

As for the SE ref_idx and mvd, their contexts are almost 

divided equally among the 6 groups. And the contexts of 

sig_coeff_flag for one coding block (for example, 16x16 

DC) are divided into 3 groups, while those of 

last_sig_coeff_flag for the same coding block are assigned 

to the other 3 groups. 

Usually the contexts of the same SE type have different 

probabilities to be visited. The assignment of the more 

frequently visited contexts should better be given prior 

consideration. For example, context 227 and 236 are more 

frequently used than the other contexts of the same SE type, 

so they are staggered in the context table. The grouping of 

the contexts is almost balanced.  
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Figure 5 – Control logic of context modeling 

 

Figure 6 – Different throughput with different input numbers 

Table 3 – Examples of binarazation combination 

SE combination Average bin/cycle 

2 pre_mode_luma 5.15 

pre_mode_chrome & cbp_luma 5.96 

Regular coeff & 1  coeff 5.12 

 

Every cycle, six contexts can be read out from SRAMs at 

most. But in the case the same context is accessed again, we 

take it that the context is legal after transformation. As Fig. 

5 shows, read_1 to read_6 are the read out contexts, and 

each context is transformed for three times. The 18 contexts 

made up of the read out contexts, the contexts after first and 

the second transformation are used as the candidates for the 

context of the corresponding bins. And the 3 contexts after 

transformation of each read out context are used as the 

candidates for the updated context to be written back to 

SRAM. A same forwarding technique as [9] is utilized for 

each SRAM to update the contexts and remove the data 

hazard. 

The average throughput of CM is affected by the defined 

maximum input bins. Fig. 6 shows the relationship between 

the throughput of CM and the input CtxIdx numbers. And 

in our design, the maximum input number is set to be 7.  

 

3.3 Binarization unit 

As Fig. 6 shows, if the throughput of binarization is 5 

bin/cycle on average, the throughput of CM can only reach 

a little higher than 4 bin/cycle. Due to the imbalance of the 

output of binarization, the throughput of CM is always 

worse than the expectation from Fig. 6. As a result, 

binarization should be properly accelerated. 

 

Figure 7 – Examples of saving clock cycles by combining 

coefficients 

 

We accelerate the bin generation speed by combining some 

SE types together for binarization. Firstly, we simulate the 

average bins of each type of SE. Then we combine the 

process of some SE types together and use FSM to do the 

control. Table 3 shows some examples of combination. 

Since coefficient with absolute value equal to 1 appears 

frequently, and the binarization result contains only 2 bins, 

the binarization of these coefficients is combined with a 

regular coefficient in binarization. As Fig. 7 shows, if there 

are 5 coefficients to be processed and the absolute values of 

coefficient 2 and 5 are both 1, it will take 5 clock cycles to 

do the binarization originally, while in our design, it takes 

only 3 clock cycles. Thus the throughput can be increased 

by saving clock cycles for coefficients. 

As Figure 4 shows, the input of the binarization is defined 

as three FIFOs. The first is used to transfer MB information 

such as MB type, coded block pattern and delta_qp. The 

second is for the prediction mode, reference index and 

significant coefficient flags. And the third is for the residual 

coefficients. The FIFO input architecture will make the 

whole video encoder easier to pipeline. 

 

3.4 Design of two PISOs 

As shown in Fig. 4, two PISOs are used to connect the 

output of the predecessor stage and provide relatively stable 

output. 

PISO_1 is used to store {bin, CtxIdx} pairs. CtxIdx is made 

up of 9 bits, 3 to indicate the SRAM group, and 6 for the 

position in the SRAM. Thus a {bin, CtxIdx} pair contain 10 

bits. The input port is designed as 16 bins from binarization 

stage. The output port is set as 7 bins, because the control 

logic will become the critical path when the output port is 

larger than 7. The depth is defined as 20, which is 

appropriate according to the simulation. The PISO_1 

contains logic to decide how much bins will be sent to CM 

part in the cycle, tell the relationship of the bins to be sent 

out, and generate the control information for the CM part. 

PISO_2 is used to store {bypass, bin, MPS, pStateIdx} 

groups. Each pair contains 9 bits. The input port is 8. The 

output port is 4. And the depth is chosen as 10 by 

simulation. 

4. SYNTHESIS RESULT AND COMPARISON 

Our design is synthesized using SMIC 90nm library. The 

synthesis result is shown in Table 4.  
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Table 4 – The Synthesis Result 

Module 

Name 

Gate 

Count 

Critical 

Path 

Throughput 

binarization 9.18K <3.58ns 5.6 bin/cycle 

PISO_1 7.49K <3.58ns 7 bin/cycle 

CM 11.07K <3.58ns 4.5 bin/cycle 

PISO_2 0.28K <3.58ns 4 bin/cycle 

BAE 8.22K 3.58ns 4 bin/cycle 

Table 5 – Comparison with Other Works 

 

Our designed BAE part is targeted at 4 bin/cycle, and the 

binarization, CM and PISO parts can provide a higher 

throughput to enhance the throughput of the CABAC 

encoder. And the design of these parts has no effect on the 

timing performance because their critical paths are all 

shorter than BAE. Our designed PISO_1 part and CM part 

occupy about a half of the circuit area. This is because 

complex control logic is adopted here to maintain efficient 

context access. 

In Table 5, our design is compared with others in terms of 

gate count, throughput, etc. Our design can achieve 4 

bin/cycle. With the working frequency of 279 MHz, 1 

Gbin/s can be provided with only one CABAC engine. 

There are several reasons for the throughput improvement 

in comparison with the other works besides the better 

synthesis library. Firstly, we enlarge the maximum 

throughput by utilizing multi-bin per cycle architecture. As 

it is shown in Fig. 2, the throughput of 4 bin/cycle BAE can 

provide a 22.9% larger throughput than 1 bin/cycle. [3] and 

[8] use 1 bin/cycle, so the throughput of the whole CABAC 

is restricted by BAE and can only reach a throughput of 

620Mbin/s though efficient pipeline is applied. Secondly, 

our design implements the context table using 6 SRAMs to 

provide efficient context modeling. We make full use of the 

context access features to group the contexts. Most the 

grouping work now only divides the contexts into two 

groups. This is not efficient, because when conflict occurs, 

only 1 context can be read out and 50% of the throughput is 

lost. And finally, our proposed work develops high speed 

binarization and efficient control logic to maintain full use 

of the throughput of CM and BAE. [7] and [10] are targeted 

at 2.37 bin/cycle while the actual performance is only 1.3 

and 1.42 bin/cycle. And in [6] and [9], double BCM cores 

and frame parallelism are used in the architecture to enlarge 

the throughput. While in our design, we make use of 

efficient control logic to resolve the inefficiency problem 

and try to avoid the usage of multi-engine or frame 

parallelism. 

5. CONCLUSIOIN 

A 1 Gbin/s CABAC encoder with full hardware design is 

proposed in this paper. Multi-bin architecture is made full 

use of to increase the throughput of BAE. 6-SRAM-based 

context modeling is applied and efficient control is 

developed to obtain highly efficient context modeling. And 

binarization part is designed for high bin rate processing 

speed. The simulation using QFHD sequences shows that 

the 4 bin/cycle throughput of BAE can be fully maintained 

while the design of the other parts doesn’t affect the timing 

performance. 
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 Synthesis 

Library 

Bins 

/cycle 

Max. 

Fre. 

(MHz) 

Logic 

Gate 

Count 

Through-

put 

(Mbin/s) 

[3] 0.13μm 1 620 27.5K 620 

[4] 0.13μm 

(TSMC) 

0.67 200 34.3K 134 

[5] 0.18μm 

(SMIC) 

1 312 

CM&AE 

14K 

CM&AE 

312 

[7] 0.13μm 

(TSMC) 

1.3 222 45K 288.6 

[8] 0.13μm 

(TSMC) 

1 578 44.6K 578 

[10] 0.13μm 

(TSMC) 

1.42 222 45.9K 315 

This 90 nm 

(SMIC) 

4 279 36.2K 1116 
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