
A 1 Gbin/s CABAC Encoder for H.264/AVC

Wei Fei, Dajiang Zhou, and Satoshi Goto

Graduate School of Information, Production and System LSI, Waseda University

2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan

phone: +81-080-4272-2462, e-mail: feichongwei@moegi.waseda.jp

ABSTRACT

In this paper, we propose a 1 Gbin/s context-based

adaptive binary arithmetic coding (CABAC) encoder

architecture for beyond-HDTV applications. CABAC is a

crucial part in H.264/AVC main and high profiles that

provides a great compression ratio at the expense of high

computational complexity. And it is also considered as a

very efficient coding method in the developing high-

efficiency video coding (HEVC) standard. We try to

accelerate the CABAC encoder to provide a high

throughput to meet the requirement of beyond-HDTV video.

Our design includes the binarization, context modeling and

binary arithmetic encoding (BAE) parts and achieves a

throughput of 4 bins per cycle. The synthesis result using

SMIC 90nm shows that the logic gate count is 36.2K in all

and the encoder engine can work at a maximum frequency

of 279MHz. Thus the overall throughput can reach over 1

Gbin/s. In our design, the 460 contexts are assigned to 6

SRAMs to attain efficient context modeling. And the

binarization part is also optimized to enhance the

throughput with low hardware cost.

1. INTRODUCTION

Context-based adaptive binary arithmetic coding (CABAC)

is introduced in H.264/AVC video coding standard as an

efficient entropy coding tool. It is remarkable for providing

a better compression ratio than most other encoding

algorithms. For example, it achieves an average more 9%-

14% of bit rate saving than the baseline entropy coding

method in H.264, CAVLC. And CABAC is still the

efficient entropy coding method considered in the

developing High-Efficiency Video Coding (HEVC)

standard, which is targeted at next-generation HDTV and

beyond-HDTV displays.

On the other hand, CABAC requires a significant amount

of logic and increases the hardware implementation cost on

a large scale. Due to the syntax-element-level dependency

as well as bit-level dependency, it is also difficult to

parallelize, thus the throughput of a single CABAC

encoding engine is limited. With the emergence of QFHD

(2160p) and Super Hi-Vision (4320p) video, the throughput

requirement is much higher and the real-time CABAC

encoder engine is much harder to design. The bin rate for

HDTV (1080p) is 40 Mbps at most. As to the QFHD and

Super Hi-vision data, it can reach a very high bin rate of

above 1 Gbin/s. This makes the design of CABAC encoder

very challenging and crucial in the whole video encoding

system.

In recent years, many papers have presented CABAC

encoder architectures for throughput accelerating and

power saving. Some designs are for 1 bin/cycle, such as [3-

5] and [8] while some adopt multi-bin architecture, like [6],

[7], [9] and [10].

It can be seen from the trend that the designs are

transferring from 1 bin/cycle to multi-bin/cycle to provide a

higher throughput. The works of [3] and [8] try to enlarge

the working frequency as much as possible by designing the

encoder with maximum pipelining. And the synthesis

results using 0.13 CMOS technique indicate a max

frequency of around 600Mbin/s at around 600 MHz. While

this is still not enough for the throughput requirement, and

the high clock frequency also brings difficulties in applying

these architectures in consumer electronics.

But many problems come out with multi-bin architecture.

Firstly, the critical path becomes longer. The BAE logic is

duplicated and cascaded sequentially to process multiple

bins in one cycle. Even though efficient pipeline is

employed, the critical path increases and the maximal

frequency decreases substantially. For example, the

maximal frequency of 1 bin/cycle BAE is 625 MHz in [2],

while 344 MHz and 192 MHz respectively for 2 and 4

bin/cycle BAE. Secondly, SRAM based context modeling

has very low efficiency to provide multi-bin/cycle. In [7]

and [10], CABAC is designed as 2.37 bin/cycle, while the

actual throughput is only 1.3 and 1.42 due much to the

inefficient context table access. At last, to achieve good

throughput, several CABACs may be used sometimes.

CABAC in [6] uses two BCMs (binarization and context

modeling) and one 4 bin/cycle BAE to achieve an overall

throughput of 4bin/cycle. And CABAC in [9] applies four

BCMs and two 2 bin/cycle BAE to achieve 3.88 bin/cycle

and better working frequency. This will surely increase the

hardware cost on a large scale. Furthermore, the multi-

engine solution either requires a frame to be partitioned into

slices (slice parallelism) which degrades coding efficiency,

or results in a longer encoding delay by employing frame

parallelism [11].

In order to meet the throughput requirement and save

hardware at the same time, a 1Gbin/s CABAC encoder is

proposed. In this work, 4-level pipeline is utilized in a 4

bin/cycle BAE to enlarge the throughput of this part. The

460 contexts are assigned to 6 banks of SRAMs and the

SRAM reading and updating control logic are developed to

This research was supported by CREST, Japan Science and
Technology Agency.

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 1524

achieve high context modeling efficiency as much as 4.5

bin/cycle on average. The binarization part is also

optimized to enhance the throughput.

The rest of the paper is organized as follows. Section II

provides an overview of CABAC encoding mechanism and

previous design works. Section III introduces the proposed

CABAC encoder architecture. Then, the synthesis result

and comparison are given in Section IV. And finally the

conclusion is drawn in Section V.

2. OVERVIEW OF CABAC ENCODER

CABAC in H.264/AVC can be described as three major

steps: 1) Binarization, 2) Context Modeling (CM) and 3)

Binary Arithmetic Encoding (BAE). Fig. 1 shows the three

stages in H.264 standard.

2.1 Binarization

In the binarization stage, the non-binary valued syntax

elements (SE) are mapped to a corresponding binary string.

There are five kinds of binarization schemes defined in

H.264: Unary (U), Truncated Unary (TU), Exp-Golomb

(EGk), Fixed-length (FL) and Unary Exp-Golumb (UEGk).

Some kinds of SEs have their special way of binarization.

The output of the binarization process is the mapped bins of

the SEs and the context indexes for the bins which are used

in the context modeling stage to fetch the right probability

mode.

Since binarization has no problem in providing a

throughput of 2 bin/cycle on average, the previous works

focus not much on this part. And sometimes several

binarization units are applied to generate good throughput,

such as [6] and [9].

2.2 Context Modeling

There are three modes in the binary arithmetic encoding

stage: regular mode, bypass mode and final mode. In the

regular encoding mode, a context model referred to by

context index is used to assign a proper probability mode

for each bin. The probability mode is used to encode the bin

in the BAE stage and the context model for this bin should

also be updated according to the bin’s value. When bypass

mode is selected, a predefined equal probability model is

used to process the bin. And in the final mode, the bin is

predicted to be 0 with the highest probability.

CABAC in H.264 adopts 460 context models to attain

accurate probability estimation, and each context model is

made up of one {MPS, pStateIdx} pair. Due to the large

memory area to store these context models, SRAM other

than register is usually chosen to implement the context

table storing the context models, such as [9] and [10]. The

synthesized area of context modeling and BAE

implemented by SRAM is 29%-35% compared with

register based one according to [2].

Data dependency exits in this part because the context

modeling of the current bin may use the updated context of

the previous bins. So logic should be developed to take care

of the hazard cases.

Figure 1 – CABAC encoding steps diagram

Table 1 – Updating of the interval

Prediction

correctness

Update of

Range
Update of Low

Miss(Bin!=MPS) rLPS Low+Range- rLPS

Hit(Bin==MPS) Range- rLPS Low

In one bin/cycle architectures, a two-port SRAM (one read

and one write ports) is used to perform context reading and

updating at the same time, and full pipeline design can be

easily employed, such as [5]. And simple control scheme

like forwarding can be applied in the pipeline to remove the

data hazard caused by the data dependency. Thus steady

throughput of one bin/cycle in the pipeline is easy to

achieve except for the SRAM initialization process.

While for multi-bin/cycle designs, context access becomes

more than 1 bin/cycle. As a result, one two-port SRAM

can’t meet the reading and updating speed requirement. It is

simulated in [2] that the context table can be subdivided

into several groups and stored in different SRAMs to add

the SRAM ports. And better performance can be obtained if

more SRAMs are used. In [10], the context table is divided

into 2 banks and 1.42 bin/cycle on average is achieved with

2 bin/cycle BAE.

2.3 Binary Arithmetic Encoding

BAE is used to encode the bins based on their probabilities.

The principle is a recursive selection of sub-division of an

interval. The interval is set as [0, 1] originally, then divided

into two according to the probability mode, and updated to

be one of the two intervals based on the correctness of the

prediction. Thus the encoded stream can be decoded using

this interval information.

The interval is defined by the low bound (Low) and length

(Range). The updating of the interval (Low and Range) is

defined in Table 1, where the value of rLPS is indexed by

pStateIdx read from context modeling. As the encoding

process goes on, the value Low become more and more

precise, and range is always kept within [0xl00, 0xlFF] by

shifting the new Range value. The shift operation is called

renormalization. The bits of Low are also shifted out little

by little and packed as the final bit stream.

The update process of the value Range and Low and the bit

packing process can be pipeline without stall, most designs

adopt 4-stage pipeline in this part. And as Fig. 2 shows,

several units are cascaded to form multi-bin/cycle

architecture. The timing performance is related to the

cascade levels. The relationship between the throughput

and the cascade levels is shown in Fig. 3, where the

synthesis utilizes SMIC 90 nm.

1525

Figure 2 – Pipeline architecture of multi-bin BAE

Figure 3 – The relationship between throughput and cascade levels

3. PROPOSED CABAC ENCODER

ARCHITECTURE

Fig. 4 depicts the block diagram of our proposed CABAC

encoder architecture. It is composed of a binarization unit, a

6-SRAM-based context modeling unit, a 4-stage pipelined

BAE and two parallel-in-serial-out (PISO) modules.

3.1 4 bin/cycle binary arithmetic encoder (BAE)

The pipeline architecture describe in Fig. 2 is used in our

design of BAE to enlarge the throughput as much as

possible. Four Update Range and four Update Low logic

units are cascaded to achieve a throughput of 4 bin/cycle in

BAE part.

The first pipeline stage in BAE is to generate the four rLPS

values for each bin according to the value of pStateIdx from

the context modeling module. One of these four values is

selected out in Update Range stage and will be used as the

rLPS value in Table 1 for interval update. The Update

Range stage will update the value of Range four times for

the four bins in a cycle and generate the information needed

for the update of Low. Then Low is updated in the next

stage and the Bit Pack stage will pack the output bit of

Update Low into the output stream.

3.2 SRAM based context modeling (CM)

To enhance the throughput of CABAC, the design of CM

should also provide a throughput of over 4 bin/cycle on

average. 6 two-port SRAMs are used in our design to store

the 460 contexts to make efficient context access possible.

The 460 contexts are divided into 6 groups according to the

feature of context access order.

Figure 4 – Proposed CABAC encoder architecture

Table 2 – Examples of group of contexts

SRAM groups 1 2 3 4 5 6

mb_type (SI) 3-5 6 7 8 9 0-2

transform_size 399

pre_mode 64-66 67 68 69

coded_block_flag

(16x16 DC)
 85-88

significant_ flag

(16 x16 DC)
 106… 107… 105…

last _flag

(16 x16 DC)
166… 167… 168…

abs_level_minus1

(16 x16 DC)(first bin)
229 230 231 227 228

abs_level_minus1

(16 x16 DC)(other bins)
233 234 235 236 232

ref_idx 56 57 58 59 54 55

Mvd 40 41 42 43 44 45-46

The throughput of CM depends much on the grouping of

the contexts. In bad grouping, if two adjacent different

contexts are store in the same SRAM, only the context for

the first bin can be read out, because SRAM has only one

read port. Good grouping will try to avoid this kind of

hazard. CABAC in [2] groups the contexts based only on

the context index (CtxIdx). If they group the contexts into b

banks, they use “CtxIdx % b” to determine the group. The

design of [5] divides the contexts into 2 banks. The CtxIdxs

of sig_coeff_flag and last_sig_coeff_flag types are

separately assigned into two banks. And for other CtxIdxs,

they assign them to “CtxIdx % 2”-th bank.

In our design, the contexts are grouped by taking the access

feature of each context index into consideration. As Tabel 2

shows, 0,1and 2 are assigned to group 6, because only one

of these three will be used for one MB and they will never

be required in the same clock cycle. Contexts indicated by 6,

7, 8, 9 are assigned respectively to group 2 to group 5

because they may be accessed one following another.

As for the SE ref_idx and mvd, their contexts are almost

divided equally among the 6 groups. And the contexts of

sig_coeff_flag for one coding block (for example, 16x16

DC) are divided into 3 groups, while those of

last_sig_coeff_flag for the same coding block are assigned

to the other 3 groups.

Usually the contexts of the same SE type have different

probabilities to be visited. The assignment of the more

frequently visited contexts should better be given prior

consideration. For example, context 227 and 236 are more

frequently used than the other contexts of the same SE type,

so they are staggered in the context table. The grouping of

the contexts is almost balanced.

1526

Figure 5 – Control logic of context modeling

Figure 6 – Different throughput with different input numbers

Table 3 – Examples of binarazation combination

SE combination Average bin/cycle

2 pre_mode_luma 5.15

pre_mode_chrome & cbp_luma 5.96

Regular coeff & 1 coeff 5.12

Every cycle, six contexts can be read out from SRAMs at

most. But in the case the same context is accessed again, we

take it that the context is legal after transformation. As Fig.

5 shows, read_1 to read_6 are the read out contexts, and

each context is transformed for three times. The 18 contexts

made up of the read out contexts, the contexts after first and

the second transformation are used as the candidates for the

context of the corresponding bins. And the 3 contexts after

transformation of each read out context are used as the

candidates for the updated context to be written back to

SRAM. A same forwarding technique as [9] is utilized for

each SRAM to update the contexts and remove the data

hazard.

The average throughput of CM is affected by the defined

maximum input bins. Fig. 6 shows the relationship between

the throughput of CM and the input CtxIdx numbers. And

in our design, the maximum input number is set to be 7.

3.3 Binarization unit

As Fig. 6 shows, if the throughput of binarization is 5

bin/cycle on average, the throughput of CM can only reach

a little higher than 4 bin/cycle. Due to the imbalance of the

output of binarization, the throughput of CM is always

worse than the expectation from Fig. 6. As a result,

binarization should be properly accelerated.

Figure 7 – Examples of saving clock cycles by combining

coefficients

We accelerate the bin generation speed by combining some

SE types together for binarization. Firstly, we simulate the

average bins of each type of SE. Then we combine the

process of some SE types together and use FSM to do the

control. Table 3 shows some examples of combination.

Since coefficient with absolute value equal to 1 appears

frequently, and the binarization result contains only 2 bins,

the binarization of these coefficients is combined with a

regular coefficient in binarization. As Fig. 7 shows, if there

are 5 coefficients to be processed and the absolute values of

coefficient 2 and 5 are both 1, it will take 5 clock cycles to

do the binarization originally, while in our design, it takes

only 3 clock cycles. Thus the throughput can be increased

by saving clock cycles for coefficients.

As Figure 4 shows, the input of the binarization is defined

as three FIFOs. The first is used to transfer MB information

such as MB type, coded block pattern and delta_qp. The

second is for the prediction mode, reference index and

significant coefficient flags. And the third is for the residual

coefficients. The FIFO input architecture will make the

whole video encoder easier to pipeline.

3.4 Design of two PISOs

As shown in Fig. 4, two PISOs are used to connect the

output of the predecessor stage and provide relatively stable

output.

PISO_1 is used to store {bin, CtxIdx} pairs. CtxIdx is made

up of 9 bits, 3 to indicate the SRAM group, and 6 for the

position in the SRAM. Thus a {bin, CtxIdx} pair contain 10

bits. The input port is designed as 16 bins from binarization

stage. The output port is set as 7 bins, because the control

logic will become the critical path when the output port is

larger than 7. The depth is defined as 20, which is

appropriate according to the simulation. The PISO_1

contains logic to decide how much bins will be sent to CM

part in the cycle, tell the relationship of the bins to be sent

out, and generate the control information for the CM part.

PISO_2 is used to store {bypass, bin, MPS, pStateIdx}

groups. Each pair contains 9 bits. The input port is 8. The

output port is 4. And the depth is chosen as 10 by

simulation.

4. SYNTHESIS RESULT AND COMPARISON

Our design is synthesized using SMIC 90nm library. The

synthesis result is shown in Table 4.

1527

Table 4 – The Synthesis Result

Module

Name

Gate

Count

Critical

Path

Throughput

binarization 9.18K <3.58ns 5.6 bin/cycle

PISO_1 7.49K <3.58ns 7 bin/cycle

CM 11.07K <3.58ns 4.5 bin/cycle

PISO_2 0.28K <3.58ns 4 bin/cycle

BAE 8.22K 3.58ns 4 bin/cycle

Table 5 – Comparison with Other Works

Our designed BAE part is targeted at 4 bin/cycle, and the

binarization, CM and PISO parts can provide a higher

throughput to enhance the throughput of the CABAC

encoder. And the design of these parts has no effect on the

timing performance because their critical paths are all

shorter than BAE. Our designed PISO_1 part and CM part

occupy about a half of the circuit area. This is because

complex control logic is adopted here to maintain efficient

context access.

In Table 5, our design is compared with others in terms of

gate count, throughput, etc. Our design can achieve 4

bin/cycle. With the working frequency of 279 MHz, 1

Gbin/s can be provided with only one CABAC engine.

There are several reasons for the throughput improvement

in comparison with the other works besides the better

synthesis library. Firstly, we enlarge the maximum

throughput by utilizing multi-bin per cycle architecture. As

it is shown in Fig. 2, the throughput of 4 bin/cycle BAE can

provide a 22.9% larger throughput than 1 bin/cycle. [3] and

[8] use 1 bin/cycle, so the throughput of the whole CABAC

is restricted by BAE and can only reach a throughput of

620Mbin/s though efficient pipeline is applied. Secondly,

our design implements the context table using 6 SRAMs to

provide efficient context modeling. We make full use of the

context access features to group the contexts. Most the

grouping work now only divides the contexts into two

groups. This is not efficient, because when conflict occurs,

only 1 context can be read out and 50% of the throughput is

lost. And finally, our proposed work develops high speed

binarization and efficient control logic to maintain full use

of the throughput of CM and BAE. [7] and [10] are targeted

at 2.37 bin/cycle while the actual performance is only 1.3

and 1.42 bin/cycle. And in [6] and [9], double BCM cores

and frame parallelism are used in the architecture to enlarge

the throughput. While in our design, we make use of

efficient control logic to resolve the inefficiency problem

and try to avoid the usage of multi-engine or frame

parallelism.

5. CONCLUSIOIN

A 1 Gbin/s CABAC encoder with full hardware design is

proposed in this paper. Multi-bin architecture is made full

use of to increase the throughput of BAE. 6-SRAM-based

context modeling is applied and efficient control is

developed to obtain highly efficient context modeling. And

binarization part is designed for high bin rate processing

speed. The simulation using QFHD sequences shows that

the 4 bin/cycle throughput of BAE can be fully maintained

while the design of the other parts doesn’t affect the timing

performance.

REFERENCE

[1] Joint Video Team of ISO/IDC MPEG and ITU-T VCEG.

“Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification (ITU-T Rec.

H.264/ISO/IEC 14 496-10 AVC)”.

[2] Y.J. Chen, C.H. Tsai, Liang-Gee Chen, “Architecture design of

area-efficient SRAM-basedmulti-symbol arithmetic encoder in

H.264/AVC”, ISCAS, 2006, pp. 2621-2624.

[3] X. H. Tian, T. M. Le, B. L. Ho, Y. Lian, “A CABAC encoder

design of H.264/AVC with RDO support”, IEEE/IFIP

International Workshop on RSP, 2007, pp. 167-173.

[4] P.S. Liu, J.W. Chen, Y.L. Lin, “A Hardwired Context-Based

Adaptive Binary Arithmetic Encoder for H.264 Advanced Video

Coding”, VLSI-DAT, 2007, pp. 1-4.

[5] W. Zheng, D.X. Li, B. Shi, H.S. Le, M. Zhang, “Efficient

pipelined CABAC encoding architecture”, IEEE Transactions on

Consumer Electronics, 2008, pp. 681-686.

[6] Y.H. Chen, T.D. Chuang, Y.J. Chen, C.T. Li, C.J. Hsu, S.Y.

Chien, L.G. Chen, “An H.264/AVC scalable extension and high

profile HDTV 1080p encoder chip”, IEEE Symposium on VLSI

Circuits, 2008, pp. 104-105.

[7] L.C. Wu, Y.L. Lin, “A high throughput CABAC encoder for

ultra high resolution video”, ISCAS, 2009, pp. 1048-1051

[8] X.H. Tian, T.M. Le, X. Jiang, Y. Lian, “Full RDO-Support

Power-Aware CABAC Encoder With Efficient Context Access”,

IEEE Transactions on Circuits and Systems for Video Technology,

2009, pp. 1262-1273

[9] L.F. Ding, W.Y. Chen, P.K. Tsung, T.D. Chuang, P.H. Hsiao,

Y.H. Chen, H.K. Chiu, S.Y. Chien, L.G. Chen, “A 212 MPixels/s

4096×2160p Multiview Video Encoder Chip for 3D/Quad Full

HDTV Applications”, IEEE Journal of Solid-State Circuit, 2010,

pp. 46-58

[10] J.W. Chen, L.C. Wu, P.S. Liu, Y.L. Lin, “A High-throughput

Fully Hardwired CABAC Encoder for QFHD H.264/AVC Main

Profile Video”, IEEE Transactions on Consumer Electronics, 2010,

pp. 2529-2536

[11] D. Zhou, J. Zhou, X. He, J. Kong, J. Zhu, P. Liu, S. Goto, “A

530Mpixels/s 4096x2160@60fps H.264/AVC high profile video

decoder chip”, IEEE Journal of Solid-State Circuits, 2011, in press.

 Synthesis

Library

Bins

/cycle

Max.

Fre.

(MHz)

Logic

Gate

Count

Through-

put

(Mbin/s)

[3] 0.13μm 1 620 27.5K 620

[4] 0.13μm

(TSMC)

0.67 200 34.3K 134

[5] 0.18μm

(SMIC)

1 312

CM&AE

14K

CM&AE

312

[7] 0.13μm

(TSMC)

1.3 222 45K 288.6

[8] 0.13μm

(TSMC)

1 578 44.6K 578

[10] 0.13μm

(TSMC)

1.42 222 45.9K 315

This 90 nm

(SMIC)

4 279 36.2K 1116

1528

