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ABSTRACT 

In this paper, a nonlinear phase finite impulse response 

(FIR) filter is designed without imposing a desired phase 

response. The maximum passband group delay of the filter is 

minimized subject to a positivity constraint on the passband 

group delay response of the filter as well as a specification 

on the maximum absolute difference between the desired 

magnitude square response and the designed magnitude 

square response over both the passband and the stopband. 

This filter design problem is a nonsmooth functional ine-

quality constrained optimization problem. To tackle this 

problem, first, the one norm functional inequality constraint 

of the optimization problem is approximated by a smooth 

function so that the nonsmooth functional inequality con-

strained optimization problem is approximated as a noncon-

vex functional inequality constrained optimization problem. 

Then, a modified filled function method is applied for find-

ing the global minimum of the nonconvex optimization prob-

lem. Computer numerical simulation results show that our 

designed nonlinear phase peak constrained FIR filter could 

achieve lower minimum passband group delay than those of 

existing designs. 

1. INTRODUCTION 

Nonlinear phase FIR filters are attractive in signal pro-

cessing applications because they could achieve better fre-

quency selectivities than linear phase filters for the same 

filter lengths. In addition, bounded input leads to bounded 

output and the stability of the filter is guaranteed. Conse-

quently, nonlinear phase FIR filters are found in many sci-

ence and engineering applications [1]. 

Although many nonlinear phase peak constrained FIR 

filter designs could be found in literature, most of these de-

signs minimize the maximum absolute differences between 

the desired magnitude square responses and the designed 

magnitude square responses [2]. However, these designs 

have not considered the maximum passband group delays of 

the filters. To tackle the maximum passband group delays of 

the filters [3], they require the desired phase responses of the 

filters. Unlike linear phase filter designs, the desired phase 

responses of nonlinear phase filters are usually unknown. By 

imposing certain desired phase responses, the maximum 

passband group delays of the designed filters are not opti-

mized. Also, the frequency selectivities of the designed filters 

could be reduced. In this paper, the maximum passband 

group delay of the filter is minimized subject to a positivity 

constraint on the passband group delay response of the filter 

as well as a specification on the maximum absolute differ-

ence between the designed magnitude square response and 

the desirable magnitude square response over both the pass-

band and the stopband of the filter. The one norm functional 

inequality constraint of the optimization problem is approxi-

mated by a smooth function so that the nonsmooth functional 

inequality constrained optimization problem is approximated 

as a nonconvex functional inequality constrained optimiza-

tion problem. Then, a modified filled function method is ap-

plied for finding the global minimum of the nonconvex op-

timization problem. Computer numerical simulation results 

show that our designed nonlinear phase peak constrained FIR 

filter could achieve lower maximum passband group delay 

than those of the existing designs. 

The outline of this paper is as follows. The problem 

formulation and the solution method are presented in Section 
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2. Computer numerical simulation results are presented in 

Section 3. Finally, a conclusion is drawn in Section 4. 

2. PROBLEM FORMULATION AND SOLUTION 

METHOD 

2.1 Problem formulation 

Denote  H ,  H ,   ,  D  and  nh  as the magni-

tude response, the phase response, the group delay response, 

the desired magnitude response and the impulse response of 

a nonlinear phase peak constrained FIR filter, respectively. 

In addition, denote 
pB , 

sB , N  and   2  as the pass-

band, the stopband, the length and the specification on the 

maximum absolute difference between the designed magni-

tude square response and the desirable magnitude square 

response of the filter, respectively. The vector of the filter 

coefficients is given as       TNhhh 1,,1,0  x , where 
T  is the transpose operator. Denote the frequency response 

kernels as 

     Ts N  1sin,,sin,0  ι , 

     Tc N  1cos,,cos,1  ι , 

       Ts NN  1sin1,,sin,0  ι  

and 

       Tc NN  1cos1,,cos,0  ι . 

Then,      xιxι  T

s
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 . A specification on the 

maximum absolute difference between the designed magni-

tude square response and the desirable magnitude square 

response of the filter is given as        222
  DH  

sp BB  . This is equivalent to 

       22

2   DT
xQx  

sp BB  . As the pass-

band group delay response of the filter is required to be posi-

tive, we have  
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pB . To minimize the 

maximum passband group delay of the filter subject to the 

positivity constraint on the passband group delay response of 

the filter as well as the specification on the maximum abso-

lute difference between the designed magnitude square re-

sponse and the desirable magnitude square response over 

both the passband and the stopband of the filter, the filter 

design problem is formulated as the following optimization 

problem: 

Problem (P ) 
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where  xf  is the cost function of the optimization problem, 

 ,1 xg  is the one norm functional inequality constraint and 

 ,2 xg  are the rational functional inequality constraint of 

the optimization problem. 

2.2 Solution method 

As Problem (P ) is a nonsmooth functional inequality con-

strained optimization problem, there are oscillations when 

running conventional optimization algorithms. Hence, it is a 

challenge to find the global minimum of the optimization 

problem. To address this difficulty, the one norm functional 

inequality constraint of the optimization problem is approx-

imated [4] by a smooth function so that the oscillations 

could be avoided. This is done by defining 
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sp BB  . It is worth noting that     ,, xx gg   

sp BB   as  0 . Problem ( P ) could be approxi-

mated as the following optimization problem: 

Problem (
P ) 

x
min   
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Problem (
P ) is a nonconvex functional inequality con-

strained optimization problem and thus it remains a challenge 

to find the global minimum of the optimization problem. For 

this, a modified filled function method [5] is applied. The 

filled function  xH  is used to escape from the current local 

minimum and to reach another point in a lower basin of  xf  

from the current local minimum. 
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where R  is a positive definite matrix that controls the spread 

of the hill of  xH  at 

kx . If R  is a diagonal matrix with all 

diagonal elements being the same and positive, then large 

values of these diagonal elements will result in a wide spread 

of the hill of  xH  at 

kx  and vice versa. The algorithm for 

solving Problem (
P ), incorporating the filled function, is 

summarized as follows. 

Algorithm 

Step 1: Initialize a minimum improvement factor  , an 

accepted error   , an initial search point 
1

~x , a posi-

tive definite matrix R  and an iteration index 1k . 
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Step 2: Find a local minimum of the following optimization 

Problem (
fP ) via the integration approach [6] based 

on the initial search point 
kx

~ . 

Problem (
fP ) 

x
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where   03 xg  is a discrete constraint we imposed. 

Denote the obtained local minimum as 

kx . 

Step 3: To escape from the current local minimum and to 

reach another point in a lower basin of  xf  from 



kx  , we find a local minimum of the following op-

timization Problem (
HP ) via the integration ap-

proach [6] based on the initial search point 

kx . 

Problem (
HP ) 

x
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where   04 xg  is a discrete constraint we imposed. 

Denote the obtained local minimum as 
1

~
kx . Set 

1 kk . 

Step 4: Iterate Step 2 and Step 3 until 
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Take the final vector of 

kx  as the global minimum 

of the original optimization problem. 

The working principle of the algorithm has been dis-

cussed in [5]. In this paper, an analytical bound on the com-

putational complexity of the algorithm is derived. Suppose 

that the algorithm takes K  iterations before the termination. 

As the constraint  x3g  is imposed on Problem (
fP ), a new 

local minimum of Problem (
fP ), which is 

kx , will not be 

located at 
kx

~ , that is 
kk xx ~ , and the cost value evaluated at 

the new local minimum will be lower than or equal to 1  

multiplied to the cost value evaluated at 
kx

~ , that is 

     kk ff xx ~1   for Kk  . Similarly, as the constraint 

 x4g  is imposed on Problem (
HP ), a new local minimum of 

Problem (
HP ), which is 

1
~

kx , will not be located at 

kx , that is 



  kk xx 1
~ , and the cost value evaluated at the new local min-

imum will be lower than or equal to 1  multiplied to the 

cost value evaluated at 

kx , that is        kk ff xx 1~
1

 for 

Kk  . Hence, we have          kkk fff xxx ~11~ 2

1   


 

for Kk  . This further implies that 
kx

~  for Kk   will not be 

stuck at local minima of  xf  because 110   . Also, we 

have        1

12 ~1~ xx ff
k

k


   for Kk  . Let the global min-

imum of the optimization problem be 
x , then we have 

       1

12 ~1 xx ff
K    for Kk  . This implies that 

   
 





1log2

log~log
1 1 xx ff

K  and the algorithm always con-

verges. Let  z  be the nearest integer of z  such that   zz  . 

Then, the computational complexity of the algorithm is 

bounded by that required for finding 

   
  
















1log2

log~log
12 1 xx ff  local minima of the optimization 

problem. 

3. COMPUTER NUMERICAL SIMULATION 

RESULTS 

Since desired phase responses of nonlinear phase peak con-

strained FIR filters are imposed in existing designs, it is very 

difficult to have a fair comparison. We intend to compare 

our works to that presented in [3] because the works pre-

sented in [3] are the most related works to our works found 

in literature. 

Both the length and the desired magnitude response of 

the filter are chosen the same as that in [3] in order to have a 

fair comparison, that is 30N  and 

 














24.00

12.01
D . 

As the optimization problem is to minimize the maximum 

passband group delay of the filter subject to the positivity 

constraint on the passband group delay response of the filter, 

the specification on the maximum absolute difference be-

tween the designed magnitude square response and the desir-

able magnitude square response over the passband of the 

filter is set exactly the same as that over the stopband of the 

filter. Since there are tradeoffs among the maximum absolute 

difference between the designed magnitude square response 

and the desirable magnitude square response, the length, the 

bandwidth and the center frequency of the filter,    is set 

to 5.34 dB for  12.0  and  24.0 . In order to 

have a good approximation between the nonsmooth func-

tional inequality constrained optimization problem and the 

corresponding nonconvex functional inequality constrained 

optimization problem,   should be small. Here, 610  is 

chosen. Also, to obtain a high accuracy of the obtained global 

minimum without the termination of our algorithm, both   

and    should be small. Here, 610   is chosen. The 

initial condition 
1

~x  of the global optimization algorithm is 

obtained based on the method discussed in [2]. Since local 

minima of nonlinear phase peak constrained FIR filters are 

usually located very close together, the spreads of the hills of 
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 xH  at 

kx  should be small and R  is chosen as the diagonal 

matrix with all diagonal elements equal to 310 . 

Based on the parameters chosen above, it only takes 

three iterations for the algorithm to terminate. Hence, our 

proposed method is very efficient. Figures 1 and 2 plot the 

maximum passband group delay as well as the square root of 

the maximum absolute difference between the designed 

magnitude square response and the desirable magnitude 

square response over the passband and the stopband of the 

filter designed via our proposed approach. It can be seen 

from the figures that they are 6.8778, 9425.56 dB and 

6062.34 dB, respectively, in which the required constraints 

are all satisfied. Compared to the results obtained in [3], 

those values are 12.43898, 7653.26 dB and 7822.44 dB, 

respectively. Although the performance on the square root of 

the maximum absolute difference between the designed 

magnitude square response and the desirable magnitude 

square response over the stopband of our designed filter is 

slightly worse than that of [3], both the maximum passband 

group delay and the square root of the maximum absolute 

difference between the designed magnitude square response 

and the desirable magnitude square response over the pass-

band of our designed filter are significantly better than that of 

[3]. This is because our proposed algorithm could find the 

global minimum of the nonconvex optimization problem, in 

which the method discussed in [3] does not optimize the 

maximum passband group delay of the filter. 
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Figure 1. The passband group delay response of our designed 

nonlinear phase peak constrained FIR filter. 
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Figure 2. (a) The square root of the maximum absolute dif-

ference between the designed magnitude square response and 

the desirable magnitude square response over the passband of 

our designed nonlinear phase peak constrained FIR filter; (b) 

that over the stopband. 

4. CONCLUSION 

This paper formulates a minimax passband group delay non-

linear phase peak constrained FIR filter design problem as a 

nonsmooth functional inequality constrained optimization 

problem. The one norm of the functional inequality con-

straint of the optimization problem is first approximated by 

a smooth function so that the nonsmooth functional ine-

quality constrained optimization problem is approximated as 

a nonconvex functional inequality constrained optimization 

problem. Then, a modified filled function method is applied 

for finding the global minimum of the nonconvex optimiza-

tion problem. Computer numerical simulation results show 

that our proposed method could efficiently and effectively 

design a minimax passband group delay nonlinear phase 

peak constrained FIR filter without imposing a desirable 

phase response.  
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