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⋆ Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) - Spain
† Dept. of Signal Theory and Communications - Universitat Politècnica de Catalunya (UPC) - Spain
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ABSTRACT

The performance of multiple-input multiple-output (MIMO) com-
munication systems is greatly increased by exploiting channel state
information (CSI) for the transmitter design. In systems where
channel reciprocity does not hold, a limited feedback link can be
used to send the CSI from the receiver to the transmitter. How-
ever, the resources for the feedback link come at the expense of
resources for the forward link. This paper studies the trade-off be-
tween the accuracy of the feedback information and system perfor-
mance. The optimum resource allocation is presented as the so-
lution to an analytic equation for different beamforming transmis-
sion schemes to maximize the worst-case performance, in a frame-
work including both time-division duplexing (TDD) and frequency-
division duplexing (FDD).

1. INTRODUCTION

Multiple-input multiple-output (MIMO) communication channels
are known to provide significant gains in system capacity [1], [2]
and resilience to fading [3], [4]. These gains depend strongly on the
quantity and quality of the channel state information (CSI) which is
available during the design [5]. Obviously, the best performance is
achieved when such CSI is complete and perfect, but this is not a
realistic assumption, specially at the transmitter. In scenarios where
channel reciprocity does not hold, a feedback link with limited ca-
pacity can be used to send the CSI from the receiver to the trans-
mitter. In this sense, there has been extensive research on feedback
techniques and quantization procedures to be applied to the channel
estimates at the receiver, such as [6, 7, 8] and references therein.

In most cases the performance analysis is evaluated without tak-
ing into account the cost of using feedback. If this cost is taken into
account explicitly it turns out that, while using a large amount of
feedback improves the quality of the CSI available at the transmit-
ter, it might not be optimum, since the remaining radio resources
available for the forward data link are lower. Furthermore, the dif-
ferential performance gain obtained by each additional feedback bit
is a decreasing function and, eventually, it becomes smaller than
the cost of dedicating an additional bit to feedback. The work in
[9] presents an preliminary study of such trade-off and a purely nu-
merical optimization of the radio resources. In this paper we go one
step further and evaluate analytically the tradeoff and the associated
radio resource allocation optimization problem.

Other works such as [10, 11] and [12] also deal with this is-
sue, but differ in the following ways. In [10], random codebooks
are used to quantize and transmit the CSI through the feedback
link. The authors present a bound on the ergodic capacity loss as
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a function of the number of feedback bits. The work in [11] con-
siders the achievable rate tradeoff analysis in two-way beamform-
ing frequency-division duplexing (FDD) systems using Grassman-
nian codebooks and random vector quantization codebooks for the
feedback, and features a resource optimization based on the allo-
cation of power among the training, feedback and data transmis-
sion phases while keeping the length of each phase constant. The
work from [12] considers multiple-input single-output (MISO) and
MIMO systems with random vector quantization (RVQ) feedback
and studies the performance when both the coherence block length
and the number of transmit antennas become large.

In this paper we consider a framework which is valid for both
time-division duplexing (TDD) and FDD, and study the tradeoff in
a one way MIMO system with feedback of the channel Gram ma-
trix, which contains the smallest amount of CSI required to perform
the optimum linear transceiver design for all the usual design crite-
ria [13, 14]. The tradeoff is presented for a general quantization and
feedback scheme, and the particular case of uniform quantization
of the elements of the channel Gram matrix exploiting the Hermi-
tian property of the matrix is derived analytically as an illustrative
example. The transmit energy is kept constant for each frame and
the optimization is done over the radio resources (time in TDD, or
frequency in FDD systems) devoted to feedback and data transmis-
sion. We present a general framework and derive, as an illustrative
example, the optimum allocation of radio resources that maximizes
the worst-case achievable data rate and the optimum allocation of
radio resources that maximizes the worst-case fixed-length packet
rate. The worst-case optimization regards the combination of the
worst possible propagation channel and the realization of the CSI
quantization error that minimizes the performance in such channel.
These quality criteria based on worst-case scenarios are associated
to systems designed to guarantee a minimum performance. How-
ever, note that other design criteria such as the maximization of the
average achievable rate are also possible within this framework.

The paper is organized as follows. The system and signal mod-
els are given in section 2. The model for the CSI at the transmitter
and the feedback quantization error are described in section 3. Sec-
tion 4 presents the optimization of the tradeoff between the CSI ac-
curacy at the transmitter and the performance in the data transmis-
sion, considering resource allocation. Simulations of such perfor-
mance are shown in section 5, while section 6 concludes the paper.

2. SYSTEM AND SIGNAL MODELS

A single-user flat fading MIMO channel model is considered, with
nT and nR transmit and receive antennas, respectively, represented
by H ∈ CnR×nT , as depicted in Fig. 1. The system is described by
the following equation:

y = HBx+w ∈ C
nR , (1)

where x ∈ C
nS represents the nS streams of symbols to be transmit-

ted with E
{
xxH

}
= I, y ∈ CnR represents the nR received samples,

and B∈CnT ×nS is the linear transmitter matrix that must satisfy the
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Figure 1: System model.

mean transmit power constraint ‖B‖2
F ≤ PT (‖ · ‖F stands for the

Frobenius norm). As proved in [13], [14], the optimum matrix B

depends on the channel Gram matrix HHH for all the usual design
criteria. Additive white Gaussian noise (AWGN) is considered at
the receiver, and is represented by w ∈CnR , with E

{
wwH

}
= σ2

wI.
The performance associated to the data transmission in the for-

ward link is represented by a function f that depends on the chan-
nel matrix H, the error in the CSI at the transmitter ∆, and the
allocation of radio resources (time or frequency) dedicated to the
transmission of feedback and data. In this paper the optimum radio
resource allocation is derived analytically for two different design
criteria based on the worst-case scenario regarding the channel and
CSI error realizations: the data rate in the forward link and the aver-
age number of error-free packets received per transmission frame.

In the next subsections a variable associated to the radio re-
source allocation between the forward and feedback links will be
introduced in the system model, in order to study the tradeoff be-
tween the achievable communication performance in the forward
link and the feedback load. In systems where the control informa-
tion and data streams share the same physical communications link,
the available radio resources have to be shared. In the case consid-
ered in this paper the transmission of data and CSI share the same
pool of radio resources. For the practical implementation, two du-
plexing schemes are considered: dividing the time axis in different
time slots and assigning each slot to the transmission of either data
or feedback information (TDD), and dividing the frequency band
into different subchannels corresponding to feedback or data trans-
mission (FDD). It will be shown that, for resource allocation pur-
poses, both schemes are dual, and the resource allocation will be
optimized for the general case. Note that in order to provide a more
realistic analysis a total energy constraint at the transmitter will be
considered, instead of a total power constraint. This ensures that the
same energy will be consumed for the transmission of data regard-
less of the duration or bandwidth of the feedback link transmission.
For the equations describing these schemes the following notation
is used: Wt stands for the total available bandwidth, and Wd repre-
sents bandwidth dedicated to data transmission. The total duration
of a time frame is given by Tt , while Td is the time dedicated to the
transmission of data. Et represents the total available energy for the
transmission of data in a frame, and N0 is the noise power spectral
density (AWGN).

A single beamforming transceiver is considered, and the radio
resource allocation is optimized to maximize the worst-case perfor-
mance. Note that in the single beamforming transceiver design the
precoder B ∈ CnT×nS is a column vector, and will be denoted as the

transmit beamforming vector b ∈ CnT , which satisfies ‖b‖2
F ≤ 1.

The next subsections describe the two particular cost functions that
are considered in this paper. Note, however, that the same process
can also be applied to other design criteria.

2.1 Transmit rate

2.1.1 Frequency-division duplexing (FDD):

In the FDD scheme, the total available bandwidth Wt is divided
among the data and the feedback links, as depicted in Fig. 2.

In such a system, the maximum achievable data rate Rd is given
by the following expression, which is an increasing function of the

Figure 2: Frequency sharing in FDD systems.

available bandwidth Wd :

RFDD

d = Wd log2

(
1+

Et

Tt

WdN0
bHHHHb

)
(bits/s). (2)

2.1.2 Time-division duplexing (TDD):

On the other hand, the TDD scheme makes use of the complete

bandwidth to transmit either data or feedback information1. The
scheduling is performed in the time domain, i.e., there are time slots
in which all the bandwidth is devoted to data transmission and in the
other time slots all the bandwidth is dedicated to the feedback link,
as depicted in Fig. 3.

Figure 3: Time sharing in TDD systems.

In a TDD system, the maximum achievable data rate is an in-
creasing function of the time devoted to transmitting data, and is
given by the following expression:

RTDD

d =
Td

Tt
Wt log2

(
1+

Et

Td

Wt N0
bHHHHb

)
(bits/s). (3)

2.1.3 General expression (TDD & FDD):

As observed in (2) and (3), the expressions of the data rate for both
TDD and FDD are dual, and they behave exactly the same as a
function of variables Td and Wd , respectively. It is possible to jointly
formulate this dependance (based on (2) and (3)) as:

Rd =
Td

Tt

Wd

Wt
Wt log2

(
1+

Et

TtWt N0

1
Td

Tt

Wd

Wt

bHHHHb

)
(bits/s).

(4)
The case where Td = Tt corresponds to FDD, and Wd = Wt corre-
sponds to TDD. Normalizing the bandwidth, (4) can also be written
as:

f1(α) = α log2

(
1+

ξ

α
bHHHHb

)
(bits/s), (5)

where α = Td

Tt

Wd

Wt
(0 ≤ α ≤ 1) and ξ = Et

TtWt N0
.

Following from (5), the optimum allocation of resources for
data and feedback transmissions according this criterion can be per-
formed using parameter α , as shown in section 4.1.

2.2 Practical fixed-length packet rate

In this subsection a more practical design scenario is also consid-
ered, where the transmission is structured in frames, each consist-
ing of L bits, and data packets of Lp bits. From the L total bits,
nbT

bits are dedicated to the transmission of CSI feedback while

1In the literature it is usually assumed that in TDD systems there is chan-

nel reciprocity and therefore feedback is not required. In practical systems,

however, the radio frequency (RF) chains have a different response for trans-

mission and for reception. There are two solutions to this issue: one option

is to still perform feedback of the complete CSI (which includes obviously

the effect of the RF chain) and the other option is to perform a calibration

of the RF chains for transmission and for reception. In this paper only the

feedback solution is considered.
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the remaining L− nbT
bits are devoted to data transmission. The

system quality criterion is the average number of error-free packets
received per frame, Rp, and is given by

Rp =
L−nbT

Lp
(1−PER) =

L−nbT

Lp
(1−BER)Lp , (6)

which, assuming a QPSK modulation for the data transmission re-

sults in the following cost function2

Rp =
L−nbT

Lp

(
1−Q

(√
ξbHHHHb

))Lp

. (7)

Observe that the effect of the parameter Td or Wd , (for TDD or FDD
schemes, respectively) can be expressed through the parameter α ,
as in the previous section. In (7), α has impact on two terms of
the equation. On one hand, the number of packets transmitted per

frame,
L−nbT

Lp
, grows with α , while on the other hand the resem-

blance of b with the optimum precoding vector (and therefore the

value of bHHHHb) decreases with α . The optimization of the
resource allocation following this criterion is derived in section 4.2.

3. FEEDBACK MODEL AND CSI AT THE TRANSMITTER

In the model presented in section 2, the CSI at the transmitter is
obtained through a limited feedback link from the receiver, that
is assumed to have perfect knowledge of the propagation channel.
Since the feedback link has limited capacity it is necessary to quan-
tize the CSI prior to sending it through the link, which introduces
a quantization error in the CSI available at the transmitter. In this

paper the channel Gram matrix HHH is normalized, quantized, and
sent through the feedback link. The motivation behind sending the
channel Gram matrix through the feedback link is that it contains
the minimum necessary information for the design of the optimum
linear precoder design for the usual design criteria, as proved in
[13, 14]. First, the channel matrix H is divided at the receiver by

a normalizing factor β , i.e., H̃ = H

β ; β = ‖H‖F . The normalized

channel Gram matrix R ≡ H̃HH̃ is then quantized and fed back.

This means that only a quantized version of R, denoted by R̂, is

available at the transmitter3. The quantization introduces a quanti-
zation error ∆, as expressed by the following equation:

R̂ = R+∆. (8)

In this paper we assume that the quantization of R is performed
at the receiver using a uniform quantization of the real and imagi-
nary parts of each element independently as is done for example
in [16] (in that work, a multiuser scenario is considered, but the
feedback scheme can be applied also to the single user case), i.e.,

since the matrix is Hermitian and of size nT ×nT , there are n2
T dif-

ferent real elements to be quantized (the real and imaginary parts
of the i, jth element of R,∀i < j and the real part of the nT ele-
ments of the diagonal of R). Consequently, the quantization error
is bounded as: − ε

2 ≤ Im
{

∆i j

}
≤ ε

2 ,− ε
2 ≤ Re

{
∆i j

}
≤ ε

2 ; ∀i 6= j

and − ε
2 ≤ ∆ii ≤ ε

2 , where ∆i j is the element i, j of ∆, ε is the quan-

tization step given by ε = γ
2nb

, γ is the dynamic range taken from
the quantization, and nb is the number of bits used to quantize each

element. Since there are n2
T real elements to be quantized, the total

number of required quantization bits is given by nbT
= nbn2

T . Using

2Note that BER = Q
(√

2
Eb
N0

)
, where Eb is the transmit energy per bit,

as shown in [15].
3Note that the normalization factor β does not impact the optimum

single-beamformer transceiver design considered in this paper. For multi-

stream systems that require knowledge of β at the transmitter, the quantiza-

tion algorithms could be used to feed back the scalar parameter β without

adding significant overhead.

the system model described in the previous section for the feed-
back link, the number of bits available to quantize each parameter
is given by

nb = (1−α)Wt TtR f /n2
T , (9)

where R f is the transmission rate of the feedback link, in bits/s/Hz,
which provides a negligible feedback error rate.

4. OPTIMIZATION OF THE RADIO RESOURCE
ALLOCATION

The precoder that maximizes the design criteria in sections 2.1 and
2.2 corresponds to the eigenvector associated to the largest eigen-
value of the channel Gram matrix [14]. Since at the transmitter

the available estimation of the channel Gram matrix R̂ contains the
quantization error ∆, the beamforming vector used for the trans-

mission corresponds to b=
√

Ptumax

(
R̂
)

, where Pt is the transmit

power and the operator umax (·) computes the eigenvector associ-
ated to the largest eigenvalue of a matrix, denoted as λmax (·).

First, we define the signal to noise ratio (SNR) as a function of
the channel realization and the error of the CSI at the transmitter ∆.
We then obtain an expression for a lower bound on the performance
(i.e., minimum SNR) for the worst case of both the CSI error ∆ and
the channel realization (or equivalently, the channel Gram matrix
R), jointly with the worst-case β .

Since a worst-case scenario is considered in this paper, we as-
sume that the CSI error is smaller than the norm of the nominal
value of the Gram matrix (otherwise the worst case would be zero
and the design would not be applicable).

Given these considerations, and in the described scenario where
the beamforming vector b corresponds to the eigenvector associated

to the largest eigenvalue of the channel Gram matrix estimation R̂,
the SNR(R,∆) is expressed as:

SNR = ξbHHHHb = ξβ 2bHRb = ξβ 2
(
bHR̂b−bH∆b

)

= ξβ 2
(

λmax(R̂)−bH∆b
)
≥ ξβ 2

(
Tr(R̂)

nT
−bH∆b

)

= ξβ 2

(
Tr(R)

nT
+

1

nT

nT

∑
i=1

∆ii −
nT

∑
i=1

nT

∑
j=1

b∗i ∆i jb j

)

= ξβ 2

(
1

nT
+

nT

∑
i=1

∆ii

(
1

nT
−b∗i bi

)
−

nT

∑
i=1

nT

∑
j 6=i

b∗i ∆i jb j

)

≥ ξβ 2

(
1

nT
− ε

2

nT

∑
i=1

∣∣∣∣
1

nT
−|bi|2

∣∣∣∣−
∣∣∣∣∣

nT

∑
i=1

nT

∑
j 6=i

b∗i ∆i jb j

∣∣∣∣∣

)

≥ ξβ 2

(
1

nT
− ε

nT −1

nT

−
nT

∑
i=1

|bi|
nT

∑
j 6=i

∣∣∆i jb j

∣∣
)

≥ ξβ 2


 1

nT
− ε

nT −1

nT

−
nT

∑
i=1

|bi|

√√√√
nT

∑
j 6=i

∣∣∆i j

∣∣2
√√√√

nT

∑
j 6=i

∣∣b j

∣∣2

 (10)

≥ ξβ 2

(
1

nT
− ε

nT −1

nT

−
nT

∑
i=1

|bi|ε
√

nT −1

2

)

≥ ξβ 2
wc

(
1

nT
− ε

nT −1

nT

− ε

√
nT −1

2

√
nT

∑
i=1

|bi|2
√

nT

∑
i=1

1

)
(11)

=ξβ 2
wc

(
1

nT
−ε

(
nT −1

nT

+

√
nT (nT −1)

2

))
≡ SNRwc, (12)

where βwc is the worst-case normalization factor (i.e., βwc ≤ β ), ∗
denotes the conjugate operator, bi is the ith element of vector b,
and the Cauchy-Schwarz inequality was used in (10) and (11).
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Finally, developing the expression of ε in (12), results in

SNRwc =
ξβ 2

wc

nT

−
β 2

wcξγ

(
nT −1

nT
+

√
nT (nT−1)

2

)

2
(1−α)

Wt Tt R f

n2
T

. (13)

For the sake of clarity, the following notation is used through

this section: C1 =
ξ β 2

wc

nT
, C2 = ξγβ 2

wc

(
nT −1

nT
+

√
nT (nT−1)

2

)
, and

C3 =
Wt Tt R f

n2
T

. This results in

SNRwc = C1 −
C2

2(1−α)C3
. (14)

4.1 Maximization of the worst-case transmit rate

As described in section 2.1, the cost function for the maximization
of the minimum achievable rate is given by

f1(α) = α log2

(
1+

1

α
SNRwc

)
, (15)

where SNRwc is the lower bound on the SNR given by (13).

Then, the optimization problem to compute the optimum re-
source allocation αopt1 can be expressed as

αopt1 = argmax
α

α log2

(
1+α−1

(
C1 −

C2

2(1−α)C3

))
, (16)

with 0 ≤ α ≤ 1. Since
d f1(α)

dα

∣∣∣
α=0

> 0,
d f1(α)

dα

∣∣∣
α=1

< 0, and there

is only a single value of α that makes the derivative
d f1(α)

dα equal
to zero, the optimum value of α corresponds to this value. The
following expression to determine αopt1 is then obtained:

log2

(
1+α−1

opt1

(
C1 −C22−(1−αopt1

)C3

))

+

(
C2

ln2 −C2C3αopt1

)
2−(1−αd1

)C3 − C1

ln2

αopt1 −C22−(1−αopt1
)C3 +C1

= 0. (17)

4.2 Maximization of the worst-case packet error rate

Using the model described in section 2.2, the cost function for the
maximization of the worst-case average number of error-free pack-
ets received per frame is:

f2(α) =
L−nbT

Lp

(
1−Q

(√
SNRwc

))Lp

(18)

=
L− (1−α)C3n2

T

Lp

(
1−Q

(√
C1 −

C2

2(1−α)C3

))Lp

. (19)

Consequently, the optimization of the resource allocation αopt2 can
be expressed as:

αopt2=argmax
α

L− (1−α)C3n2
T

Lp

(
1−Q

(√
C1 −

C2

2(1−α)C3

))Lp

. (20)

It can be shown straightforwardly that f2(α) is an increasing
fuction at α = 0, a decreasing function at α = 1, and there is only

a single value of α that makes the derivative
d f2(α)

dα equal to zero.
Therefore, the optimum value αopt2 corresponds to the value that
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Figure 4: Worst-case transmit rate versus α for different values of
the dynamic range γ .

nulls the first derivative. The value of αopt2 is then obtained from

C3n2
T

Lp

(
1

2
+

1

2
erf

(√
C1

2
− C2

2(1−αopt2
)C3+1

))Lp

+
L− (1−αopt2 )C3n2

T

2
√

2π
C2C32−(1−αopt2

)C3 ln2

×
(

1

2
+

1

2
erf

(√
C1

2
− C2

2(1−αopt2
)C3+1

))Lp−1

exp

(
−C1

2

)

×exp

(
C2

2(1−αopt2
)C3+1

)(
C1 −

C2

2(1−αopt2
)C3

)−1/2

= 0, (21)

where we used the error function, erf(x) =
2√
π

∫ x

0
e−t2

dt.

5. SIMULATION RESULTS

In this section the results of the analysis performed in this paper
are shown graphically. First, the optimization for the maximiza-
tion of the worst-case transmit rate studied in section 4.1 is con-
sidered. The scenario used for these simulations is as follows:
Et = 20,Wt = 1,Tt = 1,N0 = 1,βwc = 1,R f = 500 bits/s/Hz, and
nT = 5 antennas. Fig. 4 shows the worst-case achievable rate as a
function of the radio resource allocation parameter α for different
values of the CSI error variance, which is related to the dynamic
range γ of the quantizer used at the receiver. Fig. 5 shows the opti-
mum resource allocation as a function of ξ , which is related to the
transmit energy, for different values of γ . Observe that the allocation
of resources to the transmission of data, represented by α, that max-
imizes the worst-case transmit rate increases as γ decreases, which
means that if the error in the CSI is smaller, the proposed scheme
allocates less resources to the feedback link and more to the data
transmission. If the error is larger (higher γ), more resources are
required for the feedback link in order to have a useful CSI at the
transmitter, and α is lower.

The optimization for the maximization of the average number
of error-free packets received per frame, studied in section 4.2 is
considered next. For these simulations, the following scenario is
considered: L = 100 bits, Lp = 50 bits, Et = 20,Wt = 1,Tt = 1,N0 =
1,βwc = 1,R f = 80 bits/s/Hz, and nT = 5 antennas. Fig. 6 shows
the worst-case average number of error-free packets received per
frame as a function of the radio resource allocation parameter α
for different values of γ , while Fig. 7 shows the optimum resource
allocation as a function of ξ , for different values of γ . As in the
previous case, αopt2 decreases for higher CSI error γ . Also note that
in every case the optimum value of α is lower than 1, which means
that the feedback improves the performance in such cases.
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Figure 5: Optimum value of α for the maximization of the worst-
case transmit rate versus ξ for different error scenarios.
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Figure 6: Worst-case number of error-free packets packets received
per frame versus α for different values of the dynamic range γ .

2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ = Et

TtWt N0

α
o

p
t 2

γ = 0.14

γ = 0.12

γ = 0.1

γ = 0.08

Figure 7: Optimum value of α for the maximization of the worst-
case number of error-free packets received per frame versus ξ .

6. CONCLUSIONS

In this paper an analysis of the resource allocation (time and band-
width) between the data and the feedback links of a MIMO com-
munication system is presented and the optimum allocation strat-
egy is derived. The tradeoff between the accuracy of the CSI at the
transmitter and the radio resources for the forward link is based on
the principle that resources for the feedback transmission come at
a cost of resources for the data transmission. There is an optimum
resource allocation strategy that maximizes system performance for
any given quality criterion. The particular cases of worst-case data
rate and average fixed-length packet rate are optimized analytically
and the result is evaluated numerically for different scenarios. It is

shown that, even when the cost of feedback transmission is taken
into account, the benefits of CSI at the transmitter outweigh this
cost, which results in better performance in the considered scenar-
ios where the resource allocation is performed properly.
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