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ABSTRACT

A chemometric method based on an hypothesis test ap-
proach built upon RLS (Recursive Least Square) algo-
rithm is presented. This method offers an alternative for
online recognition: each analyzed sample leads to the
convergence of the system to a state characteristic of the
presence of a chemical compound. We present how hy-
pothesis tests are used to exploit this state. In particular
we detail some adaptations of RLS used in order to ap-
ply our method to a sensor matrix of several technolo-
gies in optimal conditions. We show the efficiency of the
approach on a real dataset reinforced by statistic results
based on simulations.

Introduction

We propose here a signal processing application to ex-
plosive compound recognition in the air. We use a solu-
tion based on different sensor technologies usually called
electronic noses. To exploit these sensors, our system
inhales the gas atmosphere to analyze. Then it exposes
sensors to the gas.
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Figure 1: Electronic nose signal acquisition example for TATP
exposition. Responses for Fluorescent, Quartz-Cristal Mi-
crobalance and Surface Acoustic Wave sensors.

The sensors have a specific response to this exposi-
tion due to the gas compound (or vapor) adsorbed by
the material coated on its surface. Used technologies are
Fluorescent detector (Opto) [2] which leads to intensity
variations, Quartz-Cristal Microbalance (QCM) [7] and
Surface Acoustic Waves (SAW) [3] which measures fre-
quency variations. These technologies are respectively
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either steady and selective but slow, or fast but sensitive
to disturbances. As monotechnology system did not give
satisfaction for large target objectives, a multitechnology
system has been considered. It takes advantage of com-
plementarity of three types of technologies. For the time
being each sensor technology correspond to a separate
system of which samples are synchronized later on. Then
a multitechnological cell will be used. Figure 1 shows
some plots of a multisensor example of signals. This case
represents triacetone triperoxide (TATP) explosive com-
pound analysis in laboratory conditions. Due to its se-
lectivity to others explosives, fluorescent sensor does not
provide response for this gas.

The targets we have to identify are TNT and its im-
purities (DNT, 4NT), EGDN and oxide water (H,0>) as
a precursor. We have to estimate the selectivity of the
complete system to interferents such as ethanol (EtOH)
and methyl ethyl ketone (MEK). In practice, the system
will provide two alert levels: first, presence detection of
an explosive compound, then its identification. The first
alarm exploits sensor selectivity by linear prediction. For
second alarm, models of laboratory conditions sensor’s
responses of each technology are exploited. They can be
formulated with sufficient accuracy by Langmuir model

[5]:

f3:(0.0)=C8 (1= "¢ ) +art B, ()

where 7 is the characteristic time of the exponential (ki-
netic), and 8, the sensor sensitivity. These two parame-
ters characterize the interaction between a chemical com-
pound and a sensor. The others parameters define the
vector O = (C, o, B)7. C denotes the compound concen-
tration, & the slope of the sensor linear drift and 3 the
sensor offset. This vector allows us to adjust the model
of the presence of a given gas to the real signal.

Over the past few years, several applications of sig-
nal processing have exploited the potential of gas sensors
for chemical compound recognition. These studies are
based on processing of the adsorption part of produced
signals. Close to our application, a neural network ap-
proach using signal from SnO, based on sensors have
been proposed by Lee et al. [6]. It allows for example
to detect gas such as butane, propane, carbon monox-
ide and others. Another approach proposed by Bemark
et al. [1] combines PCA to Gaussian process models.
Both approaches reside in the general framework pre-
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sented by Gutierrez-Osuna [4] of learning methods com-
bined with electronic noses. Cited approaches and most
of approaches described by Gutierrez-Osuna, as they wait
the complete signal acquisition, use end values given only
by a monotechnology sensor matrix.

Our approach is an alternative to other chemomet-
ric applications as it tackles the lack of learning dataset,
drift compensation and calibration transfer (two last ob-
jectives described in [4]). We also propose a detection
of the adsorption start and a system with fast response to
the compound nature. The objective is that average time
needed for second alarm is about twenty seconds in spite
of compounds’ kinetics tested so far. Their average val-
ues are around two minutes for fluorescent technology,
thirty seconds for QCM technology and ten seconds for
SAW technology. The approach is built upon hypothe-
sis tests based on final value and the shape of each sig-
nal. Formulated with sensor’s response models they are
constructed using the linear regression algorithm called
Recursive Least Square (RLS).

We present this algorithm and modifications needed
to adapt it to our application. Then we present some ex-
periments to real cases and simulated signals.

1. RLS EXPLOITATION
1.1 RLS implementation

S1 A
S2 Hypothesis test
S3

Figure 2: Summary the system architecture: real time detec-
tion of the adsorption beginning which activate identification by
hypothesis test and decision step.

Detection is based on the localisation of samples
passing over a threshold by their distance to the linear
drift. Slope of the linear drift and the gap to the drift are
estimated for each new sample. Once the beginning of
exposition is determined, an identification composed of
hypothesis test and decision steps is then applied (steps
chronology is illustrated by figure 2). Actually, a one di-
mensional approach of hypothesis tests with a fusion step
to adapt outputs to decision step has first been tested. But
gains in signals separability demonstrate the need to use
the volatile compound concentration common to all sen-
sors. It leads us to a hypothesis test using intertwined
signal. Indeed, it allows to confront sensor sensitivi-
ties. Thus, our hypothesis tests built upon RLS algorithm
provide a comparison of the adequacy between a model
linked to a compound and the signal. Then a decision is
taken based on hypothesis tests results. Furthermore, the
compound exposition to different sensor is simultaneous.
Thus kinetics of each signal can equally be exploited in
order to anticipate adsorption final values.

We now remind RLS principle (notations respects
those employed in [8]) and we will detail specific mod-
ifications applied in order to adapt this algorithm to our
issue.

1.2 One dimensional signal case

RLS application correspond to the search of the parame-
ters vector O minimizing mean square error between sig-
nal and model which is in linear case:

Z=HO+b, )

where Z denotes the signal vector, H the model ma-
trix, 0 the vector of parameters and b the additive Gaus-
sian noise which depends on the acquisition. 0 is
coherent with notations of equation (1) defining sen-
sors’ models. For a one dimensional signal, one line

of the model matrix at index k correspond to i/ =
k

(6(1 _e? ),t(k), l) where (k) is the instant when the
sample z; is acquired (the sample number k). Parame-
ters which minimize mean square error between signal
and model correspond to pseudo-inverse solution 6 =
(HTH)"'HTZ. RLS reformulate this pseudo-inverse by
updating 6 with each new sample in a recursive manner
(see [8] for further details):

Ot = O+ Py thit (zien — i T 6k) 3

where P, matrix is an adequate weighting of the different
model’s parts. Using Shermann-Morrison-Woodburry
approach, we can update it by:

Pehics 1" Pe

———— 4)
1+ iy Py

P11 =P

Multiplied by H;” matrix (of the model matrix trans-
posed limited to the analysis support) it provides the
pseudo-inverse of Hy.

The main advantage of the method resides in its very
low complexity which, for each sample, only depends on
the dimension of 8. The more complex step is the update
of P,. The real time application of all assumptions in an
embedded system is then achievable.

These notions are the basis of our method. In the fol-
lowing we will list adaptations needed in order to opti-
mize efficiency of the method to our identification frame-
work: multisensor acquisition, regularization on slope
parameter o, weighting and concentration positivity con-
straint.

1.3 Algorithm adaptations
1.3.1 Multisensor adaptation

The most specific aspect of our application is the formu-
lation of the regression for a multisensor system. It is par-
ticularly important to formulate the model in order to take
into account the common compound concentration. We
must also adapt ourselves to channels’ acquisitions with
their own sampling frequency. We provide here a model

2050



example of an acquisition with two channels. Consider-
ing equation (2) and merging all parameters in the same
vector, monochannel models become:

Zy = H0+b )

Sil—e @) ¢ 0 1 0|]|@|+b

H>6 +b; (6)

o
o | +by
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B>

Equations (5) and (6) allow formulating signals of
both sensors acquiring simultaneously the same gas. Our
vector 6 corresponds to the resolution of the equation im-
plying sample concatenation with Z, = [Z};Z,] and mod-
els concatenation with H, = [H}; H] (we use here Matlab
script notations). In that state, H. does not provide a real
time exploitation of its recursive resolution by RLS algo-
rithm. A reordered version of Z, and H, is used instead.
In practice, it means that for each sample and according
to its original sensor, we build the line of H..

Through this example, the ability to conceive a global
model is illustrated. It formulates a correlated behavior
between sensors (the exponential evolution linked to the
first column of the model matrix) and in the same time a
specific behavior for each sensor (the slope and the offset
formulated through other columns of the matrix).
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1.3.2  Regularization

At the beginning of the regression convergence, slope and
exponential evolution are too much correlated to enable
pseudo-inverse to discriminate them correctly. We hy-
pothesize that linear drift is low. So in order to avoid
confusion, a regularization limiting the slope ¢ (second
element of vector 6, see equation 1) has been formulated
as:

6 =argmin (|Z—H6/|*+T(6 —60)[*)
%]

The solution proposed by Tikhonov is 6= (HTH +
I''T)~'HT (Z—H8y) + 6y where ) corresponds to initial
value of 0. I" matrix can be defined as the initialization of
H given each parameter inertia. Diagonal values of I" are
mainly linked to parameters inertia. This regularization
leads to a faster and more robust identification.

1.3.3 Weighting

Weighting samples through the W matrix enables us to
adjust the influence of each part of the intertwined sig-
nals. Noise level or sampling frequency of each sensor

can for example be adjusted. The estimate equation be-
comes:

6=H'WH+TTT) 'HTW(Z - H6) + 6o

It allows, in our case, to equalize sensors influences
by taking into account dynamics of each technology: we
define W diagonal terms according to sensor dynamics.
Actually, it is equivalent to normalize each technology of
sensor according to the maximum value of their outputs.

1.3.4 C parameter positivity

A positivity constraint on the parameter corresponding to
the concentration of compounds in gas is also included
in the analysis process. It takes place after the mean
square error computation and not during convergence. It
inhibits assumptions which provide a negative concentra-
tion through regression.

So a set of constraints around RLS algorithm is avail-
able in order to specify hypothesis tests on vector-valued
signals. We will then propose a study evaluating the ef-
ficiency of this solution according to real and simulated
data.

2. RESULTS

As production of real data in laboratory from explosive
compound is very complex and hazardous, our validation
of the method has been done with a limited corpus of ex-
positions. First we test the solution on real data in order
to show the possibility of identification. In order to pro-
vide a statistical estimation of the method robustness, we
propose some simulations with model variability.

2.1 Real cases

We illustrate the behavior of the system on real data. We
start with illustration on two compounds (TATP, TNT)
and we show a synthesis on all compounds. Sampling
period for both experiences is about one minute for fluo-
rescent, two seconds for QCM and one hundred millisec-
onds for SAW.

2.1.1 TATP and TNT cases

The TATP exposition presented here corresponds to sig-
nal illustrated by figure 1.
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Figure 3: Compounds probability (for TATP exposition).
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Figure 3 presents probabilities corresponding to the
analysis of this experience. Confrontation of hypothe-
sis tests is presented through probabilities of presence of
compounds in gas. The system is able to give the updated
probability for each new sample acquired. Thresholds
associated to these data give automated decision about
explosive compound nature. One is based on the maxi-
mum value among probabilities and the other on the ratio
between maximum and second maximum among proba-
bilities. This test is an example of fast good identifica-
tion of TATP. From equiprobability at time zero, an in-
crease of TATP probability quickly leads, after only four
seconds, to the decision of its presence. After a light de-
crease where interferents hypothesis emerge, its probabil-
ity stabilizes to one. The speed of decision could be very
variable like for TNT exposition that we present now.
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Figure 4: Electronic nose signal acquisition example with an
exposition to TNT.

The signal for TNT exposition is presented in figure
4 in the same way we present TATP exposition in figure
1 in order to illustrate their differences.
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Figure 5: Compounds probability (for TNT exposition).

The evolution of probabilities presented in figure S is
different to the previous one. Actually, for TNT test (il-
lustrated by figure 5), both DNT and TNT assumptions
keep a great probability until 350 seconds. Then TNT
hypothesis becomes preponderant. It is due to the sim-
ilarity of DNT and TNT kinetics and sensibilities. We
have to note that this partial confusion is not a problem
as both hypothesis lead to the same deduction about ex-
plosive presence or not. According to chosen thresholds,
the decision is taken for 114 seconds. The probability

locally makes a bounce here as a sample from fluores-
cent technology arises. Its an illustration of weighting be-
havior. As fluorescent sample arises every sixty seconds
they are given an influence greater than those from QCM
and SAW technologies. Both other technologies lead to
the regular evolutions of the probabilities. This example
shows a slower evolution of probabilities illustrating the
influence of similarities in identification behavior for two
chemical compounds.

This example also shows the special behavior of the
RLS that we propose. Actually each sample updates
compounds probability according to its influence. Sam-
pling frequency of fluorescent technology is low. So we
use weighting mechanisms in order to give them the same
influence in the final decision. Thus, each sample has a
great potential influence on probabilities. It is particu-
larly important here as fluorescent technology is selec-
tive to TNT but slow. Modifications are applied for fu-
ture acquisition in order to avoid too much unbalanced
sampling frequencies. However, this example is a good
illustration of the method flexibility to take into account
each technology’s characteristics. It should be noted that
this method can be adapted to irregular sampling.

2.1.2 Results on a set of tests

We will present here a table summarizing tests results ap-
plied with aimed explosives and interferents. Presented
results are Az, the gap between the real start and the de-
tected start of exposition (localisation reference of the
beginning being manual, values are rounded), and At
the identification time when the good compound is des-
ignated. These tests correspond to eight experiences of
three sensors analyzed on the basis of parameters learned
with isolated signals. Kinetics of each compound is
around two minutes for fluorescent technology, thirty sec-
onds for QCM technology and around ten seconds for
SAW. In this test, we use the detection described in sec-
tion 1.1.

Table 1: Detection and identification times for each compound
on real data are presented here.

DNT 4NT TATP EGDN
Ay ()| 0 2 0 0
At (s) | 56 58 7 125
H,0, TINT EOH MEK
Aig(s) | O 6 0 0
Ati(s) 3 114 36 24

One can see that detection times reported on table 1
are all respecting objectives. On top of that all identifi-
cations for explosives and interferents are correct. Iden-
tification times respect objectives of the system as results
show times varying from three seconds to two minutes.
Variability of these results comes from the distribution of
kinetic and sensitivity of sensors linked to tested com-
pounds. As for TATP, H,O, example shows a fast identi-
fication: SAW being very selective to it. On the contrary,
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like TNT case, some compounds delay the decision mak-
ing as they have similar responses.

This first approach validates, according to signal ac-
quired until then, the feasibility of the approach. We will
now present simulations conceived in order to bench the
robustness of identification to model variations.

2.2 Robustness estimation - parameter variations

We present, within the framework of this test, results
obtained from multisensor signal simulations based on
model described by equation (1). The test is conceived
on the basis of a perfect detection in order to focus on
identification efficiency. Model variation analyzed here
concern adsorption kinetic 7 and sensor sensitivity 0. For
each model variation we generate one hundred simula-
tions for each tested compound model. A white Gaussian
noise is added to simulation with a level learned from
real signals. The parameter aimed by the test varies in a
uniform manner in an interval according to learnt values.
Table 2 indicates ratios of good identification (with their
mean times) according to parameter modification.

Table 2: Identification ratios and mean times of good identifi-
cation presented according to parameter variability.

Modifications | without | T£0.27 | T+0.57
Id. ratios (%) 100 100 92
Time (s) 17.2 16.8 16.7
Modifications | § £0.20 | 6 +0.50
Id. ratios (%) 99 86
Time (s) 179 17.1

Results presented by table 2 show a good robust-
ness of the method to kinetics and sensibilities variations.
Globally, identification times are stable to changes of the-
ses parameters.

This approach provides an estimation of the solution
efficiency in respect to parameter variations. It appears
from this study that the system is robust to reasonable ki-
netic and sensitivity changes. Sensibility variations seem
to have more influence on identification results than ki-
netics. We explain these results by the role of sensitiv-
ity in gains of multisensor analysis. It is the exploitation
of sensors’ complementarity through the confrontation of
sensitivities that increases discrimination.

Conclusion

We proposed an example of chemical compound recog-
nition in gas based on electronic noses. In order to keep
a flexible system (calibration and sensor drift) and based
on compounds’ adsorption models, an approach by linear
regression has been conceived.

Based on RLS algorithm, a real time analysis of sam-
ples is proposed with the fastest online answer on the na-
ture of gases in the atmosphere. As this analysis is low in
computation cost, it allows a simultaneous application of
the method for several assumptions. This method proves
to be flexible in physical model definition. Indeed we can

take into account correlations between sensors’ behaviors
and introduce constraints to the analysis (a priori knowl-
edge) in order to optimize its accuracy to real signals.

Tests with multisensor signals validate the method for
real dataset. Confronted to simulated tests signals, re-
sults also show a good robustness to kinetic and sensitiv-
ity variations.

In the next work we will take aim at a more complex
exposition for adaptation from laboratory to real condi-
tions tests.
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