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ABSTRACT

We consider the problem of finding unknown patterns that
appear multiple times in a digital image. We want to find
the number of repetitions and their positions in the image
without constraining the nature and shape of the pattern in
any way. We propose a method that is able to pinpoint the
possible locations of the repetitions by exploring the con-
nection between image compression and image complexity.
The method uses a finite-context model to build a complexity
map of the image in which the repeated patterns correspond
to areas of low complexity, which mark the locations of the
repetitions.

1. INTRODUCTION

Finding repetitions of exact or approximate unknown pat-
terns in images is a difficult problem that has not yet received
a satisfactory treatment. This paper addresses this problem
and proposes an information-theoretic solution. We estimate
the complexity of the images using a class of compression
algorithms that is able to approximate the Kolmogorov com-
plexity. The key insight is that the Kolmogorov complexity
of a repeated pattern is essentially that of the pattern itself.
This shows that repetitions are closely associated with low-
complexity areas. To turn this idea into practice we use finite-
context models that can capture, in a compact form, the most
relevant features of a given image or image region. These
models are then used to look for regions with similar charac-
teristics in the same image or in different images.

The relations between complexity theory and data com-
pression are known for some time and have been used in a
number of domains (the next section gives some background
information). Their potential interest for image analysis is
great, but the nature of the commonly available compression
algorithms is a major obstacle to further progress. Not every
compression method can be used for approximating the Kol-
mogorov complexity. Only techniques that are able to create
internal models of the data are suitable. This requirement
excludes most of the popular image compression methods,
because they do not create these internal representations. To
overcome this limitation, we developed algorithms that rely
on finite-context modeling and that work directly on the in-
tensity domain of the image, avoiding the transform or pre-
dictive steps that would destroy most of the data dependen-
cies.

A finite-context model provides, on a symbol by symbol
basis, an information measure that corresponds in essence to
the number of bits required to represent the symbol, condi-
tioned by the accumulated knowledge of all past symbols.
We use this information to build complexity surfaces, i.e.,
images in which the intensity of the pixels indicate how com-
plex is the corresponding region of the original image. Pat-
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terns that occur more than once in an image tend to require
less bits to encode as repetitions of these patterns are found.
Since the repetitions are associated with low complexity re-
gions in the complexity surface, they can be more easily un-
veiled.

2. MOTIVATION AND BACKGROUND

The works of researchers such as Solomonoff, Kolmogorov,
Chaitin and others [19, 20, 8, 3, 23, 18], related to the def-
inition of complexity measures, has found applications in
several areas of knowledge. The Kolmogorov complexity
of A, denoted by K(A), is defined as the size of the small-
est program that produces A and stops. A major drawback
of the Kolmogorov complexity (also known as the algorith-
mic entropy) is that it is not computable. To overcome this
limitation, it is usually approximated by a computable mea-
sure, such as Lempel-Ziv based complexity measures [9], lin-
guistic complexity measures [7] or compression-based com-
plexity measures [5]. These approximations provide upper
bounds on the Kolmogorov complexity.

Compression algorithms provide a natural way of ap-
proximating the Kolmogorov complexity, because, together
with the appropriate decoder, a bitstream produced by a loss-
less compression algorithm can be used to reconstruct the
original data. The number of bits required for representing
these two components (decoder and bitstream) can be viewed
as an estimate of the Kolmogorov complexity. Moreover, the
search for better compression algorithms is directly related
to the problem of improving the complexity bounds.

The evaluation of the similarity between two objects is
one of the problems that can be attacked using Kolmogorov
theory. Following this line, Li et al. proposed a similarity
metric [10] based on an information distance [2], defined as
the length of the shortest binary program that is needed to
transform A and B into each other. This distance depends not
only on the Kolmogorov complexity of A and B, respectively
K(A) and K(B), but also on conditional complexities, for ex-
ample K(A|B), that indicates how complex A is when B is
known. Because this distance is based on the Kolmogorov
complexity (which is not computable), they proposed a prac-
tical analog based on standard compressors, which they call
the normalized compression distance [10].

Successful applications of these principles have been re-
ported in areas such as genomics, virology, languages, litera-
ture, music, handwritten digits and astronomy [4]. However,
applications of the normalized compressing distance to the
imaging area are scarce. This might look surprising, but it
is justifiable due to the following reasons. According to Li
et al. [10], a compression method needs to be “normal” in
order to be used as a normalized compression distance. One
of the conditions for a compression method to be normal is



that compressing AA (the concatenation of A with A) should
generate essentially the same number of bits as compressing
A alone [4].

This implies that, in order to be suitable to approximate
the Kolmogorov complexity, a compression algorithm needs
to accumulate knowledge of the data while the compression
is performed. It needs to be able to find dependencies, to
collect statistics, i.e., it has to create an internal model of the
data.

The Lempel-Ziv compression algorithms belong to the
class of methods that create internal data models. They
are also the most often used compression algorithms in
compression-based complexity applications, including those
reported in the imaging field [22, 12, 6]. Unfortunately, al-
though the Lempel-Ziv compression techniques are quite ef-
fective for uni-dimensional data, they do not perform as well
in the case of multi-dimensional data and hence in images.

On the other hand, state-of-the-art image compressors,
such as those of the JPEG2000 [21] or JPEG-LS [24] stan-
dards, are not normal. They start by decorrelating the data
using a transformation (for example, the DCT or DWT as
in JPEG or JPEG2000) or a predictive method (as in JPEG-
LS). Therefore, they assume an a priori data model that re-
mains essentially static during compression. Moreover, this
decorrelating step destroys most of the data dependencies,
leaving to the entropy coding stage the mere task of encod-
ing symbols from an (assumed) independent source. Because
they are not normal, they cannot be used for the purpose of
conditional complexity estimation, i.e., for the estimation of
K(A|B).

These drawbacks lead us to seek compression algorithms
that are both normal and adequate to images. We found that
algorithms based on finite-context models are good candi-
dates: they build an image model and are well suited to im-
ages. As an example, a method based on binary tree de-
composition and arithmetic coding driven by finite-context
models is capable of an average lossless compression per-
formance 7.9% better than JPEG2000 [15], on the eighteen
8-bit ISO images. An L-infinity-constrained version of the
technique also exists [16, 17]. A method based on arithmetic
coding driven by a multi-bitplane finite-context model lead
to a state-of-the-art microarray image coding technique [14].
Since finite-context models show good performance with im-
ages and are normal, in the sense previously explained, they
are natural candidates to build effective compression-based
image complexity measures. In the next section we discuss
how we did this and what results we obtained.

3. THE PROPOSED METHOD

The main idea is to explore finite-context models because
they can capture, in a compact form, the most relevant fea-
tures of a given image or image region. They can then be
used to identify image regions with similar characteristics.
These models provide, on a symbol by symbol basis, an in-
formation measure that corresponds to the number of bits that
are required to represent the current symbol, taking into con-
sideration the accumulated knowledge of all past symbols.
Therefore, they can be used to build complexity surfaces,
i.e., images in which the intensity of the pixels indicate how
complex is the corresponding region of the original image.
As far as we know, the idea of constructing these complex-
ity surfaces and using them for image analysis is completely
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novel.

3.1 Finite-context models

Formally, a finite-context model collects statistics of an in-
formation source and, for every outcome of the source, as-
signs probability estimates to the symbols of the alphabet
o = {s1,82,.-.,57|}>» Where || denotes the size of the
alphabet. These estimates are calculated taking into ac-
count a conditioning context computed over a finite and fixed
number, k > 0, of past outcomes (usually, the most recent)
Xp—k+1.m = Xn—k+1---Xn—1X, (order-k finite-context model)
[1]. The number of conditioning states of the model is |.«7|*.
In the case of multi-dimensional data, and particularly in the
case of images, the notion of recent past usually refers to spa-
tial proximity. This means that x,,_; , may refer to the set
of the k spatially closest samples, and not necessarily to the k
most recently processed samples. Nevertheless, causality is
always preserved.

The probabilities, P(X,+1 = $|Xy—k+1.n), Vsewr, are cal-
culated using symbol counts that are accumulated while the
image is processed. Therefore, they are dependent not only
of the k context symbols, but also of n. We estimate the prob-
abilities using

C(S|xn7k+1..n) +a
C(Xn—ts1.n) + ||’

ey

P(XnJrl = Slxnflﬂ»l..n) =

where C(s|x,_+1.,) represents the number of times that, in
the past, the information source generated symbol s having
Xn—k+1.n as the conditioning context and where

C(-xnfk+14.n) = Z C(a|xn7k+l..n) (2)
aco

is the total number of events that has occurred so far in asso-
ciation with context x,,_j1.,. Parameter & allows balancing
between the maximum likelihood estimator and an uniform
distribution, preventing the estimator from generating zero
probabilities (recall that encoding an event with an estimated
probability equal to zero requires an infinite number of bits).
Also note that if we define

C(xnfkﬁ»l..n)

= ; 3
M= it + o1 )
we can rewrite (1) as
C(s Xn—k+1..n 1
P(Xni1 = S|Xn—tt1.0) = é()'c_k:ll)) +(1 —H)@7
) )

revealing a linear combination between the maximum likeli-
hood estimator and the uniform distribution. Moreover, it is
also easy to see that when the total number of events, n, is
large, this estimator behaves essentially as a maximum like-
lihood estimator. When a = 1, (1) is the well-known Laplace
estimator.

3.2 Complexity surfaces

A complexity surface is an image ¢, with the same geometry
as the original image f, where each pixel ¢;; contains the
code length required to encode f; ; estimated by the finite-
context model, i.e.,

0;,j = —log, P(F; ; = fi jlckij), %)



Figure 1: Context template of order six used by the finite-
context model.

where ¢ ; ; denotes the (usually) two-dimensional order-k
context and i, j the pixel coordinates. In the experiments re-
ported in this paper we used the context configuration de-
picted in Fig. 1.

When using a method based on finite-context models, the
data are scanned symbol by symbol, in a certain order. If the
pattern A is found for the first time, it will be assigned a cer-
tain complexity, depending on the number of bits needed to
represent it. When the pattern is seen again, the number of
bits needed will be smaller. This reasoning shows that the
complexity assigned to the pattern A depends on the order
by which the data are scanned. In practice, the first seen oc-
currence of the pattern could be masked. This dependency is
easy to remove, if desired: it is enough to scan the data in sev-
eral directions and always assign the minimum complexity.
In the examples presented in this paper, we have scanned the
image in four different orders, that can be easily obtained by
raster scanning the four different versions obtained by con-
secutive rotations of ninety degrees.

One of the problems associated with finite-context mod-
eling is the exponential growth of the memory resources as a
function of the size of the alphabet. Images, even gray-level,
use alphabets that render these models almost useless. There-
fore, before computing the complexity surfaces, we perform
a reduction in the number of intensities to a maximum of
twenty, using Lloyd-Max quantization [11, 13].

4. EXPERIMENTAL RESULTS

We now illustrate the potential of this idea by means of two
examples. In the first one, we inserted four copies of a square
textured region into different locations of the well-known
“Lena” image. For a human, it is a matter of a fraction of
a second for detecting all the occurrences of the alien pat-
tern. However, not knowing the pattern in advance, it is not
obvious how to build an efficient algorithm for finding all
its occurrences. In Fig. 2, we show the modified “Lena” im-
age and the corresponding complexity surface obtained using
the method previously described (in fact, for facilitating the
observation of the details, we display the logarithm of the
complexity surface scaled to the [0,255] range). It is easy
to find, in the complexity surface, the dark squares revealing
the zones of low complexity that have been originated by the
repetition of the pattern that we have inserted.

In Fig. 3, we show in greater detail the first 70 rows of
the “Lena” image and the corresponding complexity surface
showing a curious horizontal dark strip. It is curious that we
only have noticed the existence of a repeated pattern in the
first few rows of the image after visualizing its complexity
surface, demonstrating one of the potential uses of the tech-
nique.

For a second, less obvious, example, we tampered a land-
scape image by replicating parts of a rock at several loca-
tions. Figure 4 shows the resulting image and its correspond-
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ing complexity surface. Contrarily to the example using the
“Lena” image, where the modifications were evident, in this
case it would be much harder to find the changes, even for a
human (this clearly contrasts with the fact that for an algo-
rithm both cases are equally challenging). Once more, it can
be easily observed that in the labeled locations (marking the
positions of the copies) the complexity is significantly lower
(the image is darker) than in most of the rest of the image,
unveiling the repetitions. If desired, a pixel-based method
could be used to fine-tune the results.

5. CONCLUSIONS

The problem of finding unknown patterns that appear multi-
ple times in a digital image is interesting but also challenging.
The absence of a priori knowledge about the pattern makes
the task difficult. The difficulty is visually obvious: exami-
nation of the upper image of Fig. 4 does not readily reveal the
nature and location of the repetitions (or at least all of them).
This is due to the absence of hints concerning texture, shape,
intensity or color that could be easily explored.

We took an information-theoretic approach instead of a
pixel-based approach. A normal compression method, in the
sense explained in [10], that finds a pattern A that has already
been found multiple times will be able to represent it with
comparatively few bits. The number of bits that the method
uses to locally represent a set of pixels is seen to provide an
indication of its information-theoretic complexity. But with-
out adequate compression methods this idea would remain
useless.

We approached the problem using finite-context models,
which have lead to good results. The finite-context model
retains information about the image as it scans it, and pro-
duces a complexity map. The low-complexity regions of the
map contain the repeated patterns. A pixel-based method can
then be used to check or fine-tune the regions. No a priori
knowledge about the shape, texture or color of the pattern
is required and the method can find partial repeats, even in
areas where it is visually difficult to do so.

The method proposed shows good performance in a num-
ber of situations but it has shortcomings. It is unable to deal
with noisy copies, and cannot deal with operations such as
rotation. However, it represents one first step in the direction
of blind repetition finding and we hope to address some of its
limitations in the future.
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