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ABSTRACT

Information from video has been used recently to address the
issue of scaling ambiguity in convolutive blind source sepa-
ration (BSS) in the frequency domain, based on statistical
modeling of the audio-visual coherence with Gaussian mix-
ture models (GMMs) in the feature space. However, out-
liers in the feature space may greatly degrade the system
performance in both training and separation stages. In this
paper, a new feature selection scheme is proposed to discard
non-stationary features, which improves the robustness of the
coherence model and reduces its computational complexity.
The scaling parameters obtained by coherence maximization
and non-linear interpolation from the selected features are
applied to the separated frequency components to mitigate
the scaling ambiguity. A multimodal database composed of
different combinations of vowels and consonants was used
to test our algorithm. Experimental results show the perfor-
mance improvement with our proposed algorithm.

1. INTRODUCTION

Multi-channel frequency domain BSS [1, 6, 15, 12, 10] has
been extensively used for separating audio sources from their
convolutive mixtures. Typically, independent component
analysis (ICA) [3] techniques are applied to solve the in-
stantaneous model in each frequency channel. However, to
reconstruct the original sources, the separated components at
each frequency bin need to be grouped and scaled correctly to
the corresponding sources. These are the well-known prob-
lems in frequency domain BSS: permutation and scaling am-
biguities. Many methods have been developed to solve the
permutation problem [6, 15, 12, 10], while little work has
been done to address the scaling ambiguity problem. A min-
imal distortion principle (MDP) [9] technique has been usu-
ally applied to mitigate the scaling problem.

All these approaches are applied in the audio domain.
It has been shown, however, that at least human speech is
bimodal, and the cross-modal interactions (also referred as
the audio-visual coherence) can be exploited to improve the
intelligibility of human speech embedded in cocktail party
noise [16]. Such bimodality has been used in several recent
studies for blind source separation [17, 18, 14,2,7, 8, 11]. In
a previous work, we have presented a method of using the bi-
modality to reduce the scaling ambiguity [7]. It mainly con-
tains two independent stages. In the off-line training stage,
first, audio-visual features are extracted respectively and syn-
chronized to form the audio-visual space; then the Gaussian
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mixture models (GMMs) are applied to statistically charac-
terize the audio-visual coherence. In the separation stage,
after applying ICA in each frequency channel, we calculate
the scaling parameters using the audio-visual coherence, and
scale the ICA-separated frequency components with those
parameters to mitigate the scaling ambiguity.

However, outliers in the feature space may greatly affect
the GMMs used in both the training stage and the separa-
tion stage. Using more kernels could potentially mitigate this
problem but involves a higher computational complexity and
the overfitting problem (i.e. more parameters often resulting
in mismatch between the model and the data). Also, the final
scaling parameters obtained are not smooth enough which
may result in a drastic change in adjacent frequency chan-
nels of the global filter. To overcome these limitations, we
present the following new contributions:

e Instead of using all the features, we choose only robust
features with a novel frame selection scheme.

e The scaling parameters are obtained with a more flexible
method using non-linear interpolation.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the multi-channel frequency domain BSS.
The feature extraction, selection and fusion methods are pre-
sented in Section 3. Calculation of scaling parameters is
shown in Section 4. Section 5 presents experimental results,
followed by the conclusions.

2. FREQUENCY-DOMAIN BSS AND ITS
ASSOCIATED AMBIGUITIES

Suppose P observations x,(n) are recorded from K source
signals s (n) in a cocktail party scenario:

=L L)

where A represents the room impulse response filter from
source k to sensor p, n is the discrete time index and &, (n)
is the additive noise, ignored for simplicity in this work. The
objective of source separation is to find a set of separation
filters {wy,} that satisfy:
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where yy(n) is the recovered source signal.
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In frequency domain BSS, ICA algorithms for instan-
taneous mixtures are independently applied to the spectral
components X (f,7) in each frequency bin:

Y(f,0) = W(HX(f>1), (©)

where X (f,t) is the observation vector in frequency chan-
nel f at time-frame index ¢ after performing the short time
Fourier transform (STFT), and W (f) is the separation ma-
trix. Y (f,t) is considered as a copy of S(f,7), only up to
a permutation matrix P(f) and a diagonal matrix of gains

D(f):
Y(f,0) =P(f)D(f)S(f,1). 4)

These are the so-called permutation (P(f)) and scaling
(D(f)) indeterminacies.

In this paper, we only consider the scaling ambiguity,
and suppose the permutation problem is addressed and no
global permutation occurred, i.e., all components of Y;(f,7)
come from si(n). The scaling ambiguity means Y;(f,?) is
scaled with different gains in different bins f, Y(f,t) =
diie(f)Sk(f,t) where dii(f) is the k-th diagonal component
of D(f). Therefore, if we reconstruct y(n) in the time do-
main, it is an FIR-filtered version of the source signal s (n).
To solve this problem, MDP [9] can be applied:

W(f) <= diag(im(W (f)))W(f), Q)

assuming the recovered source signal yi(n) is the received
component at the k-th sensor from s(n), which is still a
filtered version of si(n). Suppose we are just interested
in the first target signal y;(f), we need to estimate a se-
ries of scaling parameters {o(f) = 1/d11(f)} to update
Yi(f,t) < a(f)Y1(f,t). The audio-visual coherence, de-
scribed in the following sections, can be used for this prob-
lem.

3. FEATURE EXTRACTION, SELECTION AND
FUSION

The relationship between the audio and visual streams can
be modeled in the feature space with features extracted and
fused as follows.

3.1 Audio-Visual Feature Space

e Audio feature
The Mel-scale filterbank analysis is applied to obtain the
audio feature. Denote %,/ = 1,2,...,L as the group of
frequency bins spanned by the [-th filter. We map the
spectral power into these filters respectively to obtain

ary (f):
an(t) =Y bi(f

fez

|ST f7 | ) (6)

where 1 denotes training and b;(f) is the magnitude of
the /-th filter while St(f,¢) is the spectral component of
the training audio.
e Visual feature

We use the same front geometric visual features as in
[17, 14, 8]: the lip width (LW) and height (LH) from
the internal labial contour. It is low-dimensional and
therefore is robust for statistical characterization. 2-
dimensional visual feature vy(t) = [LW(¢),LH(¢)]? is
extracted from the training video, and 7 is the transpose.

e Audio-visual feature
We get L sets of 3-dimensional audio-visual vectors
uy(t) = [vr(t)T,ay(¢)]7 by concatenating each audio
feature ay(t) with the visual features vy (z), correspond-
ing to each filter.

3.2 Proposed Robust Feature Selection

Most works for multimodel fusion [1, 2, 7, 8, 14, 17, 18]
employ all the extracted features. As a result, any outliers
may greatly affect the fusion results. In addition, the compu-
tational complexity is high. To improve the robustness and
accuracy of the estimation of the audio-visual coherence, we
use a new frame selection scheme based on the dynamic char-
acteristics of the visual feature.

At each time frame centered by the visual feature v(¢) =
[LW(),LH(z)]", we extract a short time period with 2Q + 1
frames, then calculate

Y (1) = O (LW (1)) + oy [LW (1 + Q)

where || - || is the Euclidean distance, o(+) is the standard de-
viation over 20 + 1 frames and o, is a weighting coefficient,
chosen between 0 and 1, which weights the influence of the
overall changing trend of the short time interval. Then we
define a Boolean variable to determine the stationarity of this

frame o
0 dzef{ 1, Yon(r) < 8 LW (1) ©

—LW@ -9, ™)

0, otherwise

where O, is a comparison coefficient, typically chosen as

0.5, and LW(¢) is the mean over the 2Q + 1 frames. Then we
smooth between adjacent frames

%W(t)ZXW(I_1)+¢%W(I)+<ZW(I+1)> 9

where + is a logical OR operator. In the same way, we can
determine .¥/(¢), and the final decision is

S (1) = A (t) - Fu(0), (10)

where - denotes logical conjunction.

If #(t) = 1, the frame will be chosen, otherwise it will
be discarded. The audio-visual features associated with the
selected frames are used in both the training and separation
stages.

This frame selection scheme effectively removes the tran-
sient period from one syllable to another. The drastic change
of visual parameters in the transient period results in outliers.
For example, in several frames of the transition process from
/al to /b/, the mouth shape may look similar to that of the ut-
terance of /o/, and those frames may be misclassified as the
the kernel related to the utterance of /o/. The proposed frame
selection scheme has mitigated this problem.

3.3 Feature Fusion

The audio-visual coherence of each filter can be statistically
characterized as a GMM model with I kernels and we use .4~
to denote the Gaussian distribution:

Z Ylt uTl

where 7; is the weighting parameter, i, = [Hzil,ﬂlizaﬂm]T
is the mean vector and X;; = diag([oji1, 02, O13)) is the diag-
onal covariance matrix of the i-th kernel associated with the

pav(ur(t )y i), (11
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[-th filter. Each kernel is a multi-variate Gaussian distribu-
tion. We denote A;; = {y;, 1;;, X1} as the parameter set, with
{A;} estimated by the expectation maximization algorithm
in the off-line training process.

4. SCALING AMBIGUITY CANCELLATION WITH
NON-LINEAR INTERPOLATION

In our early work in [7], we have proposed the scaling ambi-
guity cancellation algorithm from the coherence maximiza-
tion point of view. Suppose there are L filters in the feature
extraction process, we obtain L scaling parameters o (.%)
where % is the [-th group of frequency bins spanned by the
[-th Mel-scale filter:

a(F) = Y a )/ al), (12)

where ¢(t) is the audio feature extracted from Y;(f,t) by
equation (6) corresponding to the [-th filter, and

1
al (1) = Y cult) i, (13)
i=1
where ;3 is the third element in the mean vector l;; in equa-
tion (11) and

_ ViV (v(t) | By s Ziiv)
pv(v(®) |1)

Ry = [, )", iy = diag([0u1,012]) and py (v(r) | 1)
is the visual marginal distribution with the /-th filter:

cri(t)

. (14)

py(v() | 1) = /a , v ((0)da) (15)

Since the visual distribution and audio distribution in each
kernel are independent (the covariance matrix is diagonal),
we have

1
pv(v(O) [ 1) =Y vV (v() | By Ziiv)- (16)
=

We get L scaling parameters related to L filters. However,
we need to scale Y;(f,7) in each frequency bin f. In [7], we
simply smooth between the L scaling parameters with linear
interpolation to obtain M scaling parameters o(f), where M
is the number of frequency channels. However, the resulting
parameters are not smooth enough. Therefore, here we apply
a piecewise cubic Hermite interpolating polynomial (PCHIP)
interpolation, which ensures the monotonicity and contains
no extraneous “bumps” or “wiggles” [4].

5. EXPERIMENTAL RESULTS
5.1 Data

The corpus’ used in our research contains sequences of “V1-
C-V2”, where “V1” and “V2” are vowels from /a/, /i/ ,/ol/,
/u/, and “C” stands for the consonant from /p/, /t/, /k/, /b/, /d/,
/gl or no plosive (in the case of no plosive, the sequences are
“V1-V2”). There are 112 combinations recorded twice, one

!Thanks to B. Rivet in GIPSA-Lab for providing us with this multimodal
database.

for training and another for testing. The audio sequences are
sampled at 16 kHz while the video sampling rate is 50 Hz
and the associated visual features are extracted by a chrome
based system. We concatenate the 112 isolated sequences to
obtain two audio signals lasting approximately 50 seconds.

The length of 20 ms (i.e. 320 samples) Hamming window
is applied in STFT. 12-dimensional (L = 12) audio features
are extracted from the Mel-scale filterbank analysis. There-
fore, we get 12 sets of audio-visual features. In the frame se-
lection process, we preserve 33.7% of features by assigning
O =0.2,6,, = 0.3,and o, = 04, = 1. Then in the training
process, GMMs of 5 (I = 5) kernels are applied to model the
audio-visual coherence.

5.2 Test of Scaling Ambiguity Cancellation

First we need to demonstrate the effectiveness of the pro-
posed algorithm. We get the spectrogram of the training au-
dio, and then manually scale it with a generated function to
simulate the scaling ambiguity parameters d;;(f) shown in
the solid line in Figure 1:

di1(f) = (4xcos(f/15+1)+6) xexp(—f*3/160). (17)

If the scaling ambiguity is perfectly solved, the esti-
mated scaling parameters o(f) should satisfy Gp;(f) =
o(f)di1(f) = 1, where G denotes the global filter. Fig-
ure 1 shows the global filters with (G114v (f)) and without
(G11(f)) scaling ambiguity cancellation.
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Figure 1: The lower part shows a typical Mel scale filterbank
with 12 bands. The original spectrogram was amplified with
different scales in different frequency channels (solid line).
With the proposed algorithm, we successfully mitigate this
problem by applying scaling parameters (dot-dashed) and the
recovered spectrogram is very similar to the original one only
up to some minor multiplication (dashed line).

Next, we compare the system performance obtained with
and without the frame selection scheme. This scheme aims
to discard non-stationary features, which improves the ro-
bustness and reduces the computational complexity in both
the training and separation processes. Figure 2 shows the
reserved features (cross dots) after feature selection. Figure
3 demonstrates that using the frame selection outperforms
training with all the features.
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Figure 2: Visual frame selection scheme.
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Figure 3: Global filter G;;(f) comparison with and with-
out frame selection (GMM parameters used in the separation
stage is estimated with frame selection in the training stage).
With frame selection, G1;(f) oscillates between 0.4 to 1.2,
and especially in the low frequency bins where the majority
of energy resides, the oscillation is smaller than that without
frame selection. Overall, Gy (f) is smoother after the frame
selection.

5.3 Applied in BSS

The algorithm is tested on convolutive mixtures synthesized
on a computer. The mixing filters {/,} are generated by the
system utilizing the head related transfer functions (HRTFs)
of a dummy head [5], and the length of each mixing filter is
64, which are obtained by specifying the azimuth angles of
sources signals in relation to a human head. We select two
periods each lasting 8 seconds from the testing audio as the
source signals. The mixtures are obtained by convolving the
source signals with the HRTFs, and Gaussian white noise at
different signal to noise ratios (SNRs) is added to the mix-
tures.

In the frequency domain, the ICA technique used in [13]
is applied. Since our algorithm is based on the assumption
that components of ¥; (f,#) come from s; (n), the permutation

Performance (dB)

L
8 10 12 14 16 18 20 22 24 26 28 30
SNR (dB)

_0.5! i i i i

Figure 4: Performance comparison at different SNRs. (a)
Without scaling adjustment (i.e. directly calculated from the
frequency domain BSS). (b) Scaling with non-linear interpo-
lation but no feature selection. (c) Scaling with linear inter-
polation but no feature selection. (d) Scaling with non-linear
interpolation and frame selection. (e) Scaling with linear in-
terpolation and frame selection.

problem should be addressed, otherwise, it would greatly de-
grade the performance. Hence we have applied the correla-
tion algorithm to group the spectral components in advance.

To test the performance, we use the criterion as follows
with normalized S (f,7) and Y, (f,?):

1510/ D)l
IONGIE AV S

where | - | denotes modulus and || - || is the Frobenius norm,
and a large value of which means good performance. The
results are shown in Figure 4, which is an average of 20 in-
dependent runs with different mixing filters. From this fig-
ure, it can be observed that with the frame selection scheme,
we obtain an average of 0.75 dB improvement. And with
the non-linear interpolation algorithm, we gain a further 0.09
dB improvement. The performance improvement is mod-
est since the scaling ambiguity has smaller effect (than the
permutation ambiguity) on the degradation of the separated
signals. We also found that even though the proposed algo-
rithm still outperforms the conventional algorithm, the per-
formance actually decreases when the SNR is greater than
20 dB. Our algorithm is effective with the assumption that
the permutation problem has been addressed. However, if
the permutation occurs, the proposition might even degrade
the result. Our algorithm can be used as a supplementary
step after the permutation problem is solved. Moreover, if
the same visual feature is exploited to solve the permutation
problem, the additional computation is neglect-able for the
scaling ambiguity cancellation, which mainly lies in the off-
line training process.

& = 10log (18)

6. CONCLUSIONS

We have presented a new approach to address the scaling am-
biguity problem encountered in the convolutive BSS system,
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utilizing audio-visual coherence, which is statistically char-
acterized in the feature space with GMMs. A new frame se-
lection scheme has been proposed to improve the accuracy
of the estimation of the audio-visual coherence. Our algo-
rithm has been tested on a multimodal database composed of
different combinations of vowels and consonants, and shows
performance improvement.
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