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ABSTRACT
This paper investigates the rate of convergence of

a distributed Robbins-Monro algorithm for sensor net-
works. The algorithm under study consists of two steps:
a local Robbins-Monro step at each sensor and a gossip
step that drives the network to a consensus. Under ver-
ifiable sufficient conditions, we give an explicit rate of
convergence for this algorithm and provide a conditional
Central Limit Theorem. Our results are applied to dis-
tributed source localization.

1. INTRODUCTION

The Robbins-Monro (R-M) algorithm [1] is a widely
used procedure for finding the roots of an unknown
function h. Its applications range from Statistics (e.g.
[2]) to Electrical Engineering (e.g. [3]) through Com-
munication Networks (e.g. [4]) and Machine Learning
(e.g. [5]). Formally the R-M algorithm can be sum-
marized as an iterative scheme of the form θn+1 =
θn+γn+1(h(θn)+ξn+1) where the sequence (θn)n∈N will
eventually converge to a zero of h and ξn+1 represents
a random perturbation.

In this paper, we investigate a distributed version
of the R-M algorithm. Distributed algorithms have
aroused deep interest in the fields of communications,
signal processing, control, robotics, computer technol-
ogy, among others (e.g., [6, 7]). The success of dis-
tributed algorithms lies in their scalability but are often
harder to analyze than their centralized counterparts.
We analyze the behavior of a network of agents, rep-
resented as a graph, where each node/agent runs its
own local R-M algorithm and then randomly commu-
nicates with one of its neighbors in the hope of gradu-
ally reaching a consensus over the whole network. One
well-established device for reaching a consensus in a dis-
tributed fashion is to use gossip algorithms [8, Chapter
7]. Recently, [9, 10] considered a distributed R-M al-
gorithm combining the algorithm of [8] with a random
gossip approach[11]. In [12], we address the stability and
the convergence of this stochastic algorithm. In this pa-
per, we provide an analysis of the rate of convergence:
we prove a conditional Central Limit Theorem (CLT)
under explicit assumptions. To the best of our knowl-
edge, this CLT type result is novel for such distributed
R-M algorithms.

The paper is organized as follows. Section 2 is de-
voted to a detailed description of the proposed algo-
rithm. In Section 3 we state a set of sufficient assump-
tions for convergence. The almost sure convergence of
the algorithm is studied in Section 4. Section 5 contains

the main contribution of this paper, a central limit theo-
rem. In Section 6, the algorithm is applied to distributed
source localization.

2. DISTRIBUTED ALGORITHM

Consider a network composed by N ≥ 1 nodes, and
assume that node i ∈ {1, . . . , N} observes the random
variableXn,i at time n. Each node i generates a stochas-
tic process (θn,i)n≥1 in R

d using a two-step iterative al-
gorithm:
[Local step] Node i generates at time n a temporary

iterate θ̃n,i given by

θ̃n,i = θn−1,i + γn Hi(θn−1,i ;Xn,i) , (1)

where γn is a deterministic positive step size and
Hi(θn−1,i ;Xn,i) is some increment chosen as a function
of the previous iterate and the current observation.
[Gossip step] Node i is able to observe the values θ̃n,j
of some other j’s and computes the weighted average:

θn,i =

N
∑

j=1

wn(i, j) θ̃n,j

where Wn := [wn(i, j)]
N
i,j=1 is a stochastic matrix.

It is convenient to cast this algorithm into a vector
form. Assume that for any n ≥ 1, i ∈ {1, . . . , N},Xn,i ∈
X where X represents an arbitrary measurable space.
Define the function H : RdN × X

N → R
dN as

H(θ;x) :=
(

H1(θ1;x1)
T , · · · , HN (θN ;xN )T

)T
.

where T denotes transposition, x = (x1, . . . , xN )T

and θ = (θT1 , . . . , θ
T
N)T . Define the random vectors

θn and Xn as θn := (θTn,1, . . . , θ
T
n,N )T and Xn =

(Xn,1, . . . , Xn,N)T . The algorithm reduces to:

θn = (Wn ⊗ Id)(θn−1 + γnH(θn−1;Xn)) , (2)

where ⊗ denotes the Kronecker product and Id is the
d× d identity matrix.

3. ASSUMPTIONS

3.1 Observation and Network Models

The time varying communication network between the
nodes is represented by the sequence of random matrices
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(Wn)n≥1. For any n ≥ 1, we introduce the σ-field Fn =
σ(θ0, X1:n,W1:n). The distribution of random vector
Xn+1 conditionally to Fn is assumed to be such that:

P (Xn+1 ∈ A |Fn) = µθn
(A)

for any measurable set A ⊂ X
N , where (µθ)θ∈RdN is a

given family of probability measures on X
N . For any

θ ∈ R
dN , set Eθ[g(X)] :=

∫

g(x)µθ(dx). Denote by 1
the N×1 vector whose components are all equal to one.
Denote by |x| the Euclidean norm of any vector x. It is
assumed that:

Assumption A1.
a) Matrix Wn is doubly stochastic: Wn1 = WT

n 1 = 1.
b) (Wn)n≥1 is a sequence of square-integrable matrix-
valued random variables. The spectral radius ρn of ma-
trix E(WnW

T
n )− 11T /N satisfies:

lim
n→∞

n(1− ρn) = +∞ .

c) For any positive measurable functions f, g,

E[f(Wn+1)g(Xn+1)|Fn] = E[f(Wn+1)]Eθn
[g(X)] .

d) E[|θ0|2] < +∞.

Condition A1a) is satisfied provided that the nodes
coordinate their weights. Coordination schemes are dis-
cussed in [9, 11]. The condition also holds in case
of asynchronous networks (see [11] for details). Due
to A1b), note that ρn < 1 as soon as n is large
enough. Loosely speaking, Assumption A1b) ensures
that E(WnW

T
n ) is close enough to the projector 11T /N

on the line {t1 : t ∈ R}. This way, the amount of in-
formation exchanged in the network remains sufficient
in order to reach a consensus. Condition A1c) implies
that r.v. Wn+1 and Xn+1 are independent conditionally
to the past. In addition, (Wn)n≥1 form an independent
sequence.

3.2 Further Notations

We denote by J := (11T /N) ⊗ Id the projector onto
the consensus subspace

{1⊗ θ : θ ∈ R
d
}

and by J⊥ :=
IdN−J the projector onto the orthogonal subspace. For
any vector θ ∈ R

dN , remark that θ = 1 ⊗ 〈θ〉 + J⊥
θ

where

〈θ〉 := 1

N
(1T ⊗ Id)θ (3)

is a vector of R
d equal to (θ1 + · · · + θN)/N in case

we write θ = (θT1 , . . . , θ
T
N )T for some θ1, . . . , θN in R

d.
We introduce the mean field of the distributed Robbins-
Monro algorithm as the function h : Rd → R

d given by:

h(θ) := E1⊗θ [〈H(1⊗ θ;X)〉] , (4)

where 〈H(θ;x)〉 = 1

N (1T ⊗ Id)H(θ;x) is the average of
H(θ;x) (see Eq.(3)). Finally, ∇ is the gradient operator.

3.3 Algorithm Assumptions

We first make some assumptions about the step size of
the algorithm.

θ dummy variable in R
d

θ dummy variable in R
dN

θn,i estimate of sensor i at time n in R
d

θn vector of the N sensors’ estimates in R
dN

〈θn〉 average of the sensors estimates in R
d

J projector onto the consensus subspace
J⊥

θn disagreement vector between sensors in R
dN

Xn vector of all observations at time n, in X
N

h(θ) mean field of the algorithm h : Rd → R
d

V (θ) Lyapunov function associated with h
H(θ;X) vector valued function in R

dN × X
N → R

dN

〈H(θ;X)〉 average of function H in R
dN × X

N → R
d1 Vector (1, · · · , 1)T in R

N

γn step size
ρn spectral radius of E(WnW

T
n )− 11T /N

Table 1: Summary of useful notations

Assumption A2.
a) The deterministic sequence (γn)n≥1 is positive and
such that

∑

n γn = ∞.
b) There exists α > 1/2 such that:

lim
n→∞

nαγn = 0 (5)

lim inf
n→∞

1− ρn
nαγn

> 0 . (6)

Note that, when (5) holds true then
∑

n γ
2
n < ∞,

which is a rather common assumption in the framework
of decreasing step size stochastic algorithms [13]. In
order to have some insights on (6), consider the case
where 1−ρn = a/nη and γn = γ0/n

ξ for some constants
a, γ0 > 0. Then, a sufficient condition for (6) and A2a)
is:

0 ≤ η < ξ − 1/2 ≤ 1/2 .

In particular, ξ ∈ (1/2, 1] and η ∈ [0, 1/2). The case
η = 0 typically correspond to the case where matrices
Wn are identically distributed. In this case, ρn = ρ is a
constant w.r.t. n and our assumptions reduce to: ρ < 1.
However, matrices Wn are not necessarily supposed to
be identically distributed. Our results hold in a more
general setting. Theoretically, matrices Wn are allowed
to converge to the identity matrix (but at a moderate
speed, slower than 1/

√
n in any case).

Assumption A3.
There exists a function V : Rd → R

+ such that:
a) V is differentiable and ∇V is a Lipschitz function.
b) For any θ ∈ R

d, ∇V (θ)Th(θ) ≤ 0.
c) There exists a constant C1, such that for any θ ∈ R

d,
|∇V (θ)|2 ≤ C1(1 + V (θ)).
d) For any M > 0, the level sets {θ ∈ R

d : V (θ) ≤ M}
are compact.
e) The set L := {θ ∈ R

d : ∇V (θ)Th(θ) = 0} is bounded.
f) V (L) has an empty interior.

Assumption A3b) means that V is a Lyapunov func-
tion for the mean field h. When h is continuous, A3
combined with the condition

∑

n γn = +∞ allows to
prove the convergence of the deterministic sequence
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tn+1 = tn+γn+1h(tn) to the set L. When h is unknown
and replaced by a stochastic approximationH , the limit-
ing behavior of the noisy algorithm is the same provided
H satisfies some regularity conditions and the step-size
sequence satisfies

∑

n γ
2
n < ∞ (sse for instance [13].

Assumption A3c) implies that the Lyapunov function
V increases at most at quadratic rate O(|θ|2) when
|θ| → ∞. Assumption A3f) is trivially satisfied when L

is finite. We assume:

Assumption A4.

a) There exists a constant C2, such that for any θ ∈
R

dN ,

Eθ

[

|H(θ;X)|2
]

≤ C2

(

1 + V (〈θ〉) + |J⊥
θ|2

)

(7)

Eθ |〈H(θ;X)〉 − 〈H(Jθ;X)〉| ≤ C2|J⊥
θ| (8)

|Eθ〈H(θ;X)〉 − EJθ〈H(Jθ;X)〉| ≤ C2|J⊥
θ| . (9)

b) Function h is continuous on R
d.

Condition (7) implies that |h(θ)|2 ≤ C2(1 + V (θ)).
This means that the mean field h(θ) cannot increase
more rapidly than O(|θ|) as |θ| → ∞. Conditions (8)-
(9) are Lipschitz-like conditions which ensure that small
variations of vector θ near the consensus space cannot
produce large variations of H .

4. CONSENSUS BETWEEN SENSORS

In this section, we recall some results presented in [12]
and extend these results to the case of a non i.i.d. matrix
sequence (Wn)n≥1.

4.1 Agreement between sensors

The disagreement between sensors can be quantified
through the norm of the vector

J⊥
θn = θn − 1⊗ 〈θn〉 .

Lemma 1 (Agreement and recurrence). Under A1,
A2, A3a-c) and A4,

i) J⊥
θn converges to zero almost surely as n → ∞.

ii) For any β < 2α,

lim
n→∞

nβ
E
[

|J⊥
θn|2

]

= 0 .

Lemma 1 is the key result to characterize the asymp-
totic behavior of the algorithm. The proof is omitted
due to the lack of space, but will be presented in an ex-
tended version of this paper. Point i)means that the dis-
agremeent between sensors converges almost-surely to
zero. Point ii) states that the convergence also holds in
L2 and that the convergence speed is faster than 1/

√
n:

This point will be revealed especially useful in Section 5.

4.2 Almost sure convergence

Define the distance d(θ, A) between a point θ ∈ R
d and

a subset A ⊂ R
d by d(θ, A) := inf{|θ − ϕ| : ϕ ∈ A}.

Define 1⊗ L := {1⊗ θ : θ ∈ R
d}.

Theorem 1. Assume A1, A2, A3 and A4. Then,
w.p.1,

lim
n→∞

d(θn,1⊗ L) = 0 .

Moreover, w.p.1, (〈θn〉)n≥1 converges to a connected
component of L.

The proof is omitted. Conditions A2, A3a-e)
and A4 imply that, almost-surely, (a) the sequence
(〈θn〉)n≥1 remains in a neighborhood of L thus imply-
ing that the sequence remains in a compact set of Rd

and (b) the sequence (V (〈θn〉))n≥1 converges to a con-
nected component of V (L). Finally, A3f) implies the
convergence of (〈θn〉)n≥1 to a connected component of
V (L).

Theorem 1 states that, almost surely, the vector of
iterates θn converges to the consensus space as n →
∞. Moreover, the average iterate 〈θn〉 of the network
converge to some connected component of L. When
L is finite, Theorem 1 implies that, almost surely, θn

converges to some point in 1⊗ L.

5. A CENTRAL LIMIT THEOREM

5.1 Further assumptions

Let θ∗ be a point satisfying the following assumption.

Assumption A5. a) θ∗ ∈ L.
b) The mean field h is differentiable at point θ∗ and
h(θ) = ∇h(θ∗)(θ − θ∗) + O(|θ − θ∗|2) for any θ in a
neighborhood of θ∗, where ∇h(θ∗) denotes the d × d
Jacobian matrix of h at point θ∗.
c) ∇h(θ∗) is a stable matrix: the largest real part of its
eigenvalues is −L, where L > 0.
d) There exists δ > 0 such that the function:

θ 7→ Eθ

[

|H(θ;X)|2+δ
]

is bounded in a neighborood of 1⊗ θ∗.
e) The matrix-valued function Q : RdN → R

d×d defined
by:

Q(θ) = Eθ

[

(〈H(θ, X)〉 − Eθ〈H(θ, X)〉)
. (〈H(θ, X)〉 − Eθ〈H(θ, X)〉)T

]

is continuous at point 1⊗ θ∗.
f) Matrix Q(1⊗ θ∗) is positive definite.

Assumption A6.
a) For any n ≥ 1, γn = γ0 n

−ξ where ξ ∈ (1/2, 1] and
γ0 > 0.
b) In case ξ = 1, we furthermore assume that 2Lγ0 > 1.

5.2 Main result

By Lemma 1ii), the normalized disagreement vector

γ
−1/2
n J⊥

θn converges to zero in probability. Therefore,
the asymptotic analysis reduces to the study of the aver-
age 〈θn〉. To that end, we remark from A1a) that 〈θn〉
satisfies: 〈θn〉 = 〈θn−1〉 + γn〈H(θn−1, Xn)〉. The main
step is to rewrite the above equality under the form:

〈θn〉 = 〈θn−1〉+ γn (h(〈θn−1〉) + ǫn + rn) ,
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where ǫn is a martingale increment sequence satisfying
some desired properties (details are omitted) and where
rn is a random sequence which is proved to be negligi-
ble. The final result is a consequence of [14, Theorem 1].
A sequence of r.v. (Yn)n is said to converge in distri-
bution (stably) to a r.v. Y given an event E whenever
E (f(Yn)1E) = E (f(Y ))P(E) for any bounded continu-
ous function f .

Theorem 2. Assume A1–4, A6 and assume that there
exists a point θ∗ satisfying A5. Then, given the event
{limn→∞〈θn〉 = θ∗},

γ−1/2
n (θn − 1⊗ θ∗)

D−→ 1⊗ Z .

where Z is a d × 1 zero mean Gaussian vector whose
covariance matrix Σ is the unique solution to:

(∇h(θ∗) + ζId)Σ + Σ (∇h(θ∗) + ζId) = −Q(1⊗ θ∗)
(10)

where ζ = 0 if ξ ∈ (1/2, 1) and ζ = 1/(2γ0) if ξ = 1.

Theorem 2 states that, given the event that sequence
θn converges to a given point 1⊗ θ∗, the normalized er-

ror γ
−1/2
n (θn − 1 ⊗ θ∗) converges to a Gaussian vector

The latter limiting random vector belongs to the con-
sensus subspace i.e., it has the form 1 ⊗ Z, where Z is
a Gaussian r.v. of dimension d.

5.3 Influence of the network topology

To illustrate our claims, assume for simplicity that
(Wn)n≥1 is an i.i.d. sequence. Then ρn =: ρ is a con-
stant w.r.t. n. In this case, all our hypotheses on se-
quence (Wn)n≥1 reduce to:

ρ < 1 . (11)

In order to have more insights, it is useful to relate the
above inequality to a connectivity condition on the net-
work. To that end, we focus on an example. Assume
for instance that matricesWn follow the now widespread
asynchronous random pairwaise gossip model described
in [11]. At a given time instant n, a node i, picked at ran-
dom, wakes up and exchange information with an other
node j also chosen at random (other nodes k /∈ {i, j}
do not participate to any exchange of information). Wn

belongs to the alphabet {Wi,j : i, j = 1, . . . , N} where:

Wi,j := Id − (ei − ej)(ei − ej)
T /2 ,

where ei represents the ith vector of the canonical ba-
sis (ei(k) = 1 if i = k, zero otherwise). Denote by
Pi,j = Pj,i the probability that the active pair of nodes
at instant n coincides with the pair {i, j}. In practice,
Pi,j is nonzero only if nodes i, j are able to communi-
cate (i.e. they are connected). Consider the weighted
nondirected graph G = (E,V,W) where E is the set of
vertices {1, . . . , N}, V is the set of edges (by definition,
i is connected to j iff Pi,j > 0), and W associates the
weight Pi,j to the connected pair {i, j}. Using [11], it is
straightforward to show that condition (11) is equivalent
to the condition that G is connected.

Corollary 1. Replace conditions (1) and (6) with the
assumption that G is connected. Then Theorems 1 and 2
still hold true.

In particular, the (nonzero) spectral gap of the
Laplacian of G has no impact on the asymptotic be-
havior of sequence θn. Stated differently, the dominant
source of error in the asymptotic regime is due to the
observation noise. The disagreement between sensors is
negligible even in networks with a low level of connec-
tivity.

6. NUMERICAL RESULTS

We consider the application of the above algorithm to
distributed statistical inference by maximum likelihood.
D sources are positioned at unknown locations (in R

2)
and these locations are estimated by N sensors. The
unknown locations are collected in θ∗, θ∗ ∈ R

d where
d = 2D, and we assume that Xn ∈ R

N , the received
signal energy measurements at each sensor at time n,
are i.i.d. r.v. with distribution µ(dx1, · · · , dxN ) =
∏N

i=1
f∗,i(xi)dxi so that µθ = µ for any θ. We con-

sider a parametric family of density distributions on R
N ,

{f(·; θ), θ ∈ R
d} of the form f(x1:N ; θ) =

∏N
i=1

fi(xi; θ)
and we want to compute the maximum likelihood esti-
mate. Therefore, in this setting,

Hi(θ;xi) = ∇θ log fi(xi; θ) ,

and

h(θ) =
1

N

N
∑

i=1

∫

∇θ log fi(xi; θ)f∗,i(xi)dxi .

It is easily checked that the Lyapunov function V is the
Kullback-Leibler divergence between f∗ and the density
f(·; θ), so that the above theoretical results show that
the sequence of vectors {θn, n ≥ 0} defined by (2) con-
verges to the set of the stationary points of V . There-
fore, this distributed algorithm has the same asymp-
totic behavior as a centralized Maximum Likelihood al-
gorithm.

In the numerical applications, we consider a network
with N = 40 sensors and D = 1 source. The graph is
shown in Figure 1. We run the algorithm described by
(2): (i) Matrices Wn are chosen as in Section 5.3. (ii)
the step sequence γn is set to c1/n

0.6 for n ≤ 10000
iterations, c2(logn/n)

0.6 for 10000 < n ≤ 20000 and
c3(log n/n)

0.6 for n > 20000 with c1 < c2 < c3. (iii) the
initial value θ0 ∈ R

dN is chosen at random under the
uniform distribution on the square [0, 50]× [0, 50]. The
observations are obtained by choosing f∗,i as a Gaussian
distribution on R with mean m∗,i and variance σ2

∗ given
by

m∗,i =
1000

|θ∗ − ri|2
, σ2

∗ = s̄2 10−0.3

where ri ∈ R
2 is the location of sensor i and s̄2 =

N−1
∑N

i=1
m2

∗,i. Finally, the fitted model is such that

fi(·; θ) is a Gaussian distribution with mean 1000/|θ−
ri|2 and variance σ2

∗ (see [15] for a similar model).
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The convergence of the algorithm (2) to the con-
sensus subspace is illustrated in Figure 2. Four paths
(started from the same value θ0) are run and we display
n 7→ (1/N)|θn − 1⊗ θ∗| for n ≤ 50000. Convergence to
the consensus subspace can be observed; note also the
role of the step size sequence in the rate of convergence
(compare the definition of γn above and the changes in
the slopes at time n = 10000 and n = 20000).

The rate in the Central Limit Theorem is illustrated
in Figure 3. We compute (1/N)γ−1

n En where En :=
|θn−1⊗θ∗|2 for 500 independent paths of the algorithm
(2) started from the same value θ0. Figure 3 shows the
median, and the first and third quartiles of these 500
values as a function of the number of iterations n.
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Figure 1: N = 40 sensors (diamonds), their neighbor-
hood (lines) and the source (red star)
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Figure 2: Cumulated relative error (over the N sensors)
when estimating θ∗, as a function of the number of iter-
ations.
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