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ABSTRACT 
Background modelling and foreground detection, which 
significantly affect the performance of intelligent visual sur-
veillance systems, are challenging works due to dynamic 
background, illumination changes, image artefacts, etc. This 
paper describes an improved algorithm for background 
modelling. A pixel-wise non-parametric statistical model of 
the HSV colour components and gradients is used for back-
ground modelling. Since the non-parametric statistical mod-
el using the kernel density estimation is computationally 
complex, the probability density functions are estimated as a 
product of several one-dimensional histograms. Then, fore-
ground regions are detected by using the Bayesian decision 
rule. The experimental results showed that the proposed 
algorithm produced more accurate and stable results than 
existing background modeling methods and the colour de-
correlation procedure produced improvements. 

 

1. INTRODUCTION 

 
Foreground detection, which extracts regions of interest (ob-
jects) from images, is an important step in most intelligent 
visual surveillance systems. There are mainly three catego-
ries in these foreground detection methods: optical flow, 
temporal differencing, and background subtraction [1-2]. 
Optical flow methods are computationally complex and sen-
sitive to noise, and temporal differencing methods frequently 
fail to extract the complete contours of foreground regions. 
Background subtraction is a popular foreground detection 
method since it overcomes the aforementioned problems. In 
background subtraction methods, background modelling is 
used. Since background modelling significantly affects the 
performance of foreground detection, it is important to use a 
good background model, which is robust against dynamic 
backgrounds, illumination changes, and shadows. 
Stauffer et al. proposed a parametric background modelling 
method using a mixture of Gaussians (MOG) to represent 
RGB colour distributions at each pixel [3]. The method has 
been the basis model in many background modelling meth-
ods because the method is simple and fast. The MOG-based 
methods use predefined parameters to decide whether a pixel 
is from the background or the foreground region. Therefore, 
one drawback of the methods is that the performance may be 
heavily affected by the parameter selection. In order to over-

come this problem, Lee et al. used the Bayesian decision rule 
instead of the predefined standard deviation [4]. Nevertheless, 
there are some limitations of the MOG method itself. The 
MOG methods use a K-means algorithm for parameter ini-
tialization. When the background involves many modes, a 
small number of Gaussian distributions may not efficiently 
model the background region. 
Alternatively, nonparametric background modelling meth-
ods without any assumptions about the underlying distribu-
tion could be used. In [5], 4W  models background regions 
with maximum and minimum intensity values, and maxi-
mum temporal variations in colours. The surveillance sys-
tem proposed by Li et al. represented the background region 
as a collection of the most significant and frequent features 
of colours, gradients, and colour-occurrences in the RGB 
colour space [6]. Elgammal et al. proposed a background 
modelling method using kernel density estimation [7]. 
Based on training samples, this method estimates the proba-
bilities that a pixel is the background region. However, the 
method requires a long processing time. Park et al. ad-
dressed the problem representing the probability density 
functions for the background regions as a product of several 
one-dimensional histograms with the assumption that the 
correlation between channels of the feature vector is zero [8]. 
However, this assumption may not be always true. Based on 
this observation, we proposed an improved version of [8]. In 
the proposed algorithm, we first de-correlated channels of 
feature vectors using principle component analysis (PCA). 
Experimental results and comparisons with existing methods 
on various environments are provided. 
 

 
2. THE BAYESIAN RULE FOR CLASSIFYING 

FOREGROUND AND BACKGROUND REGIONS [8] 
 
First, the foreground/background classification based on the 
Bayesian rule of [8] is briefly described. Let 
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image at time n and let v  be a d-dimensional feature vector 
extracted from ),( yxnI . Using HSV colour and gradient 
information, a 4-dimensional feature vector v  at )(x,ynI  
was constructed as follows: 
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where h, s and v represent the hue, saturation and value com-
ponents of the HSV colour space. The last element (e) repre-
sents a gradient obtained from the RGB colour space: 
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where the symbol *  denotes convolution. VE  and HE  rep-
resent the vertical and horizontal masks of an edge detector. 
Then the posterior probability that the feature vector v  at a 
pixel comes from the background (foreground) region is giv-
en by 
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where bw  and fw  represent the background and foreground 

regions. )(, wyxP  represents the prior probability of the 

background or foreground regions at ),( yx  and )(, vyxp  
represents the probability density function of the feature vec-
tor. Using the Bayesian decision rule, pixel ),( yx  is classi-
fied as background if 
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Substituting (3) into (4), the pixel is classified as a back-
ground region if the following condition was met: 
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3. THE MODELING OF THE STATISTICS BASED ON 
KERNEL DENSITY ESTIMATION 

 
To use Eq. (5), the density functions and prior probabilities 
need to be estimated in advance. One can use nonparametric 
techniques that directly estimate the density function from 
the data such as kernel density estimation. Assuming that 
feature vectors { }niS i ,,2,1| L== v  extracted from the first 

n frames,  ( )b
yxp w|ˆ , v  can be estimated as follows: 
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where Σj  is a kernel function with a symmetric positive 
definite dd ´  bandwidth matrix Σ  such that 

)()( 2/12/1 vΣΣvΣ
--= jj . Typically, the normal distribu-

tion ( )1,0N  is used for the kernel function. 
To avoid the long processing time of non-parametric kernel 
density estimation, we used multi-dimensional histograms to 
approximate density functions. However, a problem is that 
such multi-dimensional histograms require a large amount of 
memory. For a d-dimensional feature vector, if each element 
is quantized to L levels, the histogram contains dL  bins. Also, 
a limited number of samples are available for histogram es-
timation so that the number of training samples is inade-
quately small compared to the number of bins. In order to 
address the problems, the multi-dimensional histogram was 
approximated as a product of one-dimensional histograms 
assuming that the channels of the feature vector are inde-
pendent [8]. However, this assumption may be unreasonable 
and potentially risk because the correlation between colour 
channels (elements of  the feature vector) is relatively high.  
In this paper, we make the elements of the feature vector 
uncorrelated by applying PCA. Let [ ]x,y

d
x,yx,y φφΦ ,,1 L=  be 

a matrix consisting of eigenvectors, x,y
jφ  ( dj ,,1 L= ), ac-

quired from S  at the location of (x,y). Then the uncorrelated 
vector, iυ , can be obtained as follows: 
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where iv  is a feature vector and Sμ  is the mean of feature 
vectors. Since the transformed vector iυ  is now uncorrelated, 
the multi-dimensional histogram of iυ  can be approximated 
as a product of one-dimensional histograms as follows: 
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where kc  is the centre of the hypercube represented by vec-

tor [ ]Tdj kkk ,,,,1 LL=k  in the transformed feature space. 
In other words, we divided the transformed feature space into 
a number of hyper-cubes and estimated the probability densi-
ty at the centre of each cube. js  is a bandwidth for each 

dimension and jx  is defined as the j-th element of vector 

x . 
We also construct the histograms for the pdf of the fore-
ground region: ( )f

yxp w|, v . Since the foreground region 
may exhibit arbitrary colours and gradients, we assume that 
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the underlying densities of ( )f
yxp w|, v  have a uniform dis-

tribution: 
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where jK  represents the number of bins of each dimension. 

Initially, the prior probabilities, )(,, wnyxP  ( { }fb www ,Î ), 
are set to 0.5. Finally, we define a reference background im-
age [ ]),(),,(),,(),( yxByxByxByx B

n
G
n

R
nn =B  as follows: 
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where med represents a pixel-wise median filtering operation, 
which is used to exclude the pixels of moving foreground 
objects in the training images. 
 

 
4. BACKGROUND SUBTRACTION 

 
After computing the histograms for the background regions 
from n training images, foreground detection for a new enter-
ing image is performed using the Bayesian decision rule [8]. 
Then the statistics (the histograms and the prior probabilities) 
are updated to adapt to gradually changing backgrounds. 
 
4.1. Foreground detection 
We first compute the difference image between a newly en-
tering image and the reference background image and then 
apply a threshold operation: 
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where )(x,yFn  is a foreground candidate binary image, cT  
is an adaptive threshold value for each colour channel gener-
ated using [9] and the symbol Ú  represents a logical OR 
operation. For each foreground candidate pixel (i.e., 

1)( =x,yFn ), we extract a feature vector v  and transform it 
as follows: 
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Then the pixel is changed to a background region if the fol-
lowing rule is met: 
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where jk  is the bin index that jυ  falls into. After classify-

ing all the pixels, there may have been several small holes 
inside the foreground regions and noises in the background 

regions. Since most of the noise regions are small in size, 
these erroneous regions can be easily eliminated by applying 
morphological operations. 
 
4.2. Updating of the statistics and background image 
The prior probabilities and histograms must be updated to 
adapt to gradually changing backgrounds as new images are 
entered. We use a simple IIR filter to update the prior proba-
bilities and histograms for background. If )(x,ynI  is classi-
fied as a background region, the statistics are updated as fol-
lows: 
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where a  represents a learning rate which determines the 
adaptation speed. A large value of a  allowed the back-
ground model to adapt quickly to a new image sequence. 
After updating, the prior probabilities and histograms were 
normalized. The background image was also updated as fol-
lows [8]: 
 
If )(x,ynI  is classified as a background region, 

then )()()1()(1 x,yx,yx,y nnn IBB ×+×-=+ aa . 
Otherwise, )()(1 x,yx,y nn BB =+ . 

(16) 

 
 

5. EXPERIMENTAL RESULTS 
 
5.1. Data sets 
The proposed algorithm was tested with the image sequences 
in [6]. The data set1 was acquired using a fixed camera in 
indoor and outdoor environments and presented potentially 
problematic scenarios (dynamic background, sudden illumi-
nation changes, etc) for background modelling. The data set 
includes nine image sequences (buffet restaurant: BR, cam-
pus: CAM, meeting room: MR, subway station: SS, fountain: 
FT, airport: AP, lobby: LB, shopping centre: SC, and water 
surface: WS). The data set also provides the ground truth 
data of randomly selected 20 images for each image se-
quence (a total of 180 ground truth images). The image reso-
lutions range from 120160´  to 256320´  pixels. 
 
5.2. Quantitative and qualitative evaluations 
The proposed method requires several parameters ( djK L,1= : 

the number of bins, dj ,,1L=s : the bandwidth of the kernel 
functions, and a : learning rate). In our tests, the parameters 

jK , js , and a  were fixed to 200, 3.5, and 0.02, respec-
tively. The Jaccard similarity is used for quantitative perfor-
mance assessment and defined as follows: 
 

                                                           
1  Available at a website http://perception.i2r.a-
star.edu.sg/bk_model/bk_index.html. 
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where 1S  represents the foreground pixel set obtained by an 
algorithm and 2S  represents the pixel set of the ground truth 
data. Table 1 shows the Jaccard similarities of the proposed 
method and other methods. The overall performance of the 
proposed method was better than that of other methods. 
Figs. 1-4 show experimental results for the SC, CAM, SS, 
and LB image sequences: a test image (top, left), the ground 
truth data of the test image (top, right), the results of the pro-
posed method (bottom, left), and the results of Li’s method 
(bottom, right). In indoor environments, there are significant 
specular reflections and shadows on the floor. These cause 
illumination changes. The three sequences (B, AP, and SC) 
were captured in such environments. The proposed algorithm 
produced more satisfactory results and was more robust 
against shadows than the Li’s method since the proposed 
method used the HSV colour space [2, 8]. 
The proposed method also provided good results for the se-
quences with dynamic background regions (CAM, MR, FT, 
and WS). These sequences included swaying tree branches, 
moving curtains due to winds, water streams, and rippling 
water surfaces. The experimental results show that the pro-
posed method effectively handled such difficult scenes and 
more accurately detects foreground regions than the Li’s 
method. On the other hand, the Li’s method showed slightly 
better performance than the proposed method in the MR im-
age sequence since the proposed method lost a part of the 
person whose clothes’ colour was similar to the curtain col-
our. Also, the proposed method incorrectly classified a part of 
dynamic curtains as foreground regions. 
The SS sequence shows dynamic background regions (mov-
ing escalators). The proposed method successfully adapted to 
these dynamic background regions, but occasionally failed to 
detect colours similar to the escalator colour. The Li’s meth-
od also failed in this case. Furthermore, there are sudden 
background illumination changes caused by the auto gain 
controlling of video recording devices.  
The main difficulty in the LB sequence is that the back-
ground region suddenly changed due to light switching. The 
LB images in Fig. 4 show the situation when some lights 
were switched off. In this case, the proposed method incor-
rectly classified some background regions as foreground re-
gions due to these sudden changes while the Li’s method 
correctly handled this problem. 
Compared to the Park’s method [8], the proposed method 
shows some improvement due to the proposed de-correlation 
procedure. 
 
6. Conclusions 
 
In this paper, we proposed a background modelling method 
using nonparametric kernel density estimation based on the 
Bayesian theory were proposed. We further used the de-
correlation procedure to improve performance. Experimental 
results using the data sets obtained in indoor and outdoor 

environments showed that the proposed method is robust for 
complex, dynamic, multi-modally background and produced 
more accurate and stable results than other background mod-
elling method. Furthermore, the de-correlation procedure 
produced some improvement compared to [8]. 
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Table 1. Performance comparison of the proposed method 

and other methods. 
 

Image 
sequence Proposed Park [8] Li [6] MOG [3] 

BR 0.686 0.648 0.564 0.358 

CAM 0.779 0.794 0.683 0.48 

MR 0.900 0.899 0.911 0.445 

SS 0.641 0.649 0.534 0.277 

FT 0.791 0.792 0.674 0.663 

AP 0.692 0.677 0.508 0.28 

LB 0.693 0.671 0.706 0.421 

SC 0.710 0.683 0.645 0.423 

WS 0.892 0.900 0.851 0.536 

Average 0.754 0.746 0.675 0.431 
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Fig. 1. Experimental results for the SC image sequence. 

 

 

 
Fig. 2. Experimental results for the CAM image sequence. 

 
 

 

 
Fig. 3. Experimental results for the SS image sequence. 

 

 

 
Fig. 4. Experimental results for the LB image sequence. 
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