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ABSTRACT

Automatic modulation recognition plays an important role
in several military and civilian applications. Depending on
the application, latency can be the bottleneck for designing
an automatic modulation classifier (AMC). In this paper, an
AMC based on low complexity signal features to improve
latency and percentage of real-time operation is designed for
broad-band military applications.

1. INTRODUCTION

Automatic modulation classification of a signal is an interme-
diate operation between signal detection and data demodu-
lation or system reaction (Electronic Warfare, EW). It plays
a key task in several civilian and military receivers. Signal
classification increases its difficulty without previous knowl-
edge of the received data, symbol timing, carrier frequency,
phase offsets, bandwidth, etc.

An AMC can be divided into two different sections [1]:
signal preprocessing and the classification algorithm. The
first section can estimates the signal power, signal to noise
ratio, time of arrival, pulse width or carrier frequency. The
optimum strategy is a joint design of these two sections.
If this is not possible, the classification algorithm must be
adapted to the estimation accuracies of signal preprocess-
ing. Depending on the complexity of the AMC, it can be
“real-time” or “off-line”.

There are two groups of classification algorithms,
likelihood-based (LB) [1,2] (also known as decision-theoretic)
and feature-based (FB) approach (or pattern recognition ap-
proach) [1,3-7]. The first group is based on the likelihood
function of the received signal and the solution is optimal in
the sense that it maximizes the probability of classification.
The implementation of a likelihood-based algorithm requires
high computational complexity and usually it is simplified
into a suboptimal algorithm.

On the other hand, the FB algorithms extract several sig-
nal features and the classification is carried out by processing
these features in a pre-designed way. The feature-based ap-
proaches are not optimal but are simpler to implement.

EW equipments should be capable of detecting, locating
and identifying enemy signals in the minimum time in order
to generate effective jamming responses or countermeasures.
In that scenario, latency is one of the main problems for
designing an AMC, so classification algorithm should be as
simple as possible.

We have designed an FB AMC for military applications
based on features of the instantaneous phase of the received
signal. The modulation classification is based on a hierarchi-
cal decision tree. A signal is classified into 4 possible modu-
lations: No Modulation (NM), Linear Frequency Modulation
(LFM), Non-Linear Frequency Modulation (FM) and Phase
Shift Keying (PSK). After this classification, PSK modula-
tions are subclassified as 2PSK, 4PSK or MPSK (M > 4).

Partly supported by TEC2008-02148/TEC.

© EURASIP, 2011 - ISSN 2076-1465

AMC
. Signal Classification

Detection Preprocessing Algorithm
B P PRALLER.
B PW

I Received Pulse I Time .
Feature Block
Block 1 Extraction Classification
ool
Feature Block
Extraction Classification

Block
Classification

Feature

Block K Extraction

i i
i i
i i
i i
i i
i i
i i
' Block 2 i
i i
i i
i i
i i
i i
i i
i i

Figure 1: Global classification scheme. The block-by-block
scheme reduces the computational complexity.

Modulation parameters such as chirp rate, bandwidth or
symbol rate are estimated too.

2. GLOBAL CLASSIFICATION ALGORITHM

Once the signal is detected, its time of arrival (TOA) and
pulse width (PW) are estimated (Figure 1). The carrier
frequency is estimated too and the signal is converted to
baseband, with a residual frequency error.

The input signal (PW samples) is divided into blocks of
N samples in order to reduce the computational complexity.
The AMC works on a block-by-block scheme. Signal features
are extracted for each block and the blocks are classified
afterwards (Figure 1).

N is fixed by the hardware implementation of the al-
gorithm and by operational requirements like latency. For
example, in a FPGA platform implementation, N is limited
by FPGA accumulators [7].

After the block-by-block operation, the AMC provides
the final signal modulation and parameter estimates by col-
lecting all the partial classifications and estimates. Several
strategies can be applied. The one proposed consists of a
priority system and a majority rule. The final classification
is:

e NM if all the block classifications are NM.

e LFM if the majority of blocks are LFM, disregarding the
blocks classified as NM.

e F'M if the majority of blocks are FM, disregarding the
blocks classified as NM.

e PSK if the majority of blocks are PSK, disregarding the
blocks classified as NM.

Once the signal is classified as PSK, the modulation is:
e 2PSK if all the block classifications are 2PSK.
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e 4PSK if all the blocks are classified as 2PSK or 4PSK.
e MPSK (M > 4) if at least one block is classified as MPSK.

3. BLOCK CLASSIFICATION ALGORITHM

The first step is to determine the signal features of interest.
We have studied several signals features based on the un-
wrapped instantaneous phase and the normalized instanta-
neous frequency of the signal. The unwrapped instantaneous
phase is calculated as follows:

Puln] = Fu(oln]) (1
where ¢[n] is the instantaneous phase and Fy(-) is the un-
wrap function.

The normalized instantaneous frequency is calculated as
the first difference of the instantaneous phase divided by 27:

¢u [n] — ¢u[n — 1] (2)

filn] = o

3.1 Signal features

The signal features extracted are:
e The mean square error (MSE) between the unwrapped
phase and its least squares linear fitting:

L N
INM = go (Puln] —anmn — bNM)2 3)

where ann and by are the coefficients of the linear
fitting.

e The MSE between the unwrapped phase and its least
squares parabolic fitting:

N-1
1 2 2
VLFM = g . (uln] — aLrm n* —brpymn — cLrum)
-

(4)
where arrn, bory and cprar are the coefficients of the
parabolic fitting.

e The variance of the instantaneous frequency:
;N
WEN_1 Z (filn] = ﬁfi)2 (5)
n=1

where [if; is the estimated mean of f;[n].
e The kurtosis of the instantaneous frequency:

11—
=T N ; (filn] = fige)’* (6)

The signal features for the PSK subclassification are:
e The MSE between the unwrapped phase (previously mul-
tiplied by 2), ¢u,2[n], and its least squares linear fitting:

N-1
1
12PSK = ZO (u.2[n] — aspsk n — bapsk)®  (7)
where aspsk and bopsk are the coefficients of the linear
fitting.
e The MSE between the unwrapped phase (previously mul-
tiplied by 4), ¢u,4[n], and its least squares linear fitting:

N-1
1
VAPSK = 3 ZO (u,a[n] — aspsk n — bapsk)®  (8)

where aspsk and bspsk are the coefficients of the linear

fitting.

All signal features are selected because of its low com-
plexity and the possibility of selecting SNR-independent
thresholds, assuming an operational degradation.
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Figure 2: Hierarchical decision tree.

3.2 NM, PSK, LFM, FM classification

After the feature extraction, block classification is made fol-
lowing the hierarchical decision tree shown in Figure 2.

e Step 1. The unwrapped instantaneous phase of a NM
signal is ¢u[n] = 27 fen, where f. is the residual carrier
frequency error. So, the first decision of the tree is (Fig-
ure 3):

YNM 2 thynm 9)
NM

e Step 2. The phase transitions of a PSK signal generate
high spikes in the instantaneous frequency. In that case,
the kurtosis of f;[n] for a PSK is greater than the kurtosis
for the rest of modulations. The vk —~v plane (variance
- kurtosis of instantaneous frequency) is used to separate

PSK signals (Figure 4):

wo S flyx) (10)
PSK

where f(z) defines the decision region. We have adopted
a linear region in logarithmical units, so the function is
f(z) = az®.

e Step 3. If the instantaneous frequency of a LFM signal is
a straight line, then the unwrapped instantaneous phase
follows a parabolic equation (Figure 3). The final decision

of the tree is:
FM

yrm 2 thirm (11)
LFM

3.3 PSK subclassification

If the signal is classified as PSK, the PSK subclassification
is performed according to the hierarchical tree of Figure 5.

e Step 1. If the instantaneous phase of a 2PSK signal is
multiplied by 2, phase transitions of 7 are converted to
27 and then these phase transitions are eliminated by the
unwrap function. In this case, the unwrapped instanta-
neous phase is a straight line and the first decision is
(Figure 6):

Yopsk 2 thopsk (12)

2PSK

e Step 2. Similarly to 2PSK, if the modulation is 4PSK
then the instantaneous phase multiplied by 4 and un-
wrapped must be a straight line (Figure 6):

MPSK

Yapsk 2 thapsk (13)

4PSK
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Figure 3: ynm — yorm plane. N = 1024, SNR = 10 dB.
LFM - red circle, 2FSK - green triangle, 2PSK - blue square,
4PSK - blue cross, 8PSK - blue asterisk, NM - black dia-
mond.
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Figure 4: vk — v plane. N = 1024, SNR = 10 dB. LFM -
red circle, 2FSK - green triangle, 2PSK - blue square, 4PSK
- blue cross, 8PSK - blue asterisk, NM - black diamond.
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Figure 5: Hierarchical decision tree for PSK subclassifica-
tion.
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Figure 6: ~2psk — vapsk plane. N = 1024, SNR = 10 dB.
2PSK - blue square, 4PSK - black cross, 8PSK - red asterisk.
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Figure 7: ynn histogram of NM and LFM signal.

Computational burden of some features could be reduced
decimating the unwrapped instantaneous phase. In that
case, feature variances increase and thresholds should be
modified.

4. THRESHOLD IMPLEMENTATION

AMC performance is analyzed with complex signals cor-
rupted with Complex Additive White Gaussian Noise (C-
AWGN). Block length is N = 1024 samples. Signal frequen-
cies and bandwidths are normalized by sampling frequency
and LFM chirp rates («) are normalized by the square of
sampling frequency. Residual carrier frequency error follows
a cont:i))nuous uniform distribution between —4 - 107° and
4-1077°.

Thresholds thNM, f(x), thLFM, thQPSK and th4PSK are
calculated with Monte Carlo simulations for a wide range
of modulations and SNR. Thresholds can be selected either
dependent or independent of SNR. If SNR is not estimated,
thresholds should be fixed for an objective SNR, resulting in
an additional performance degradation for higher SNR, as is
justified in the following example.

Figure 7 shows the histogram of vy for NM and LEM
(Jo| =5-1077 and |a| = 2-107°%) and SNR = 10, 11 and
12 dB. Separation between NM and LFM increases with
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variation with SNR. b = —4.7 is SNR~independent in f(z).

Table 1: Confusion matrix. LFM signal, N = 1024. SNR-
dependent thresholds (o = 0 dB, known SNR).

| SNR = 10 dB | LFM [ NM |
la] =5-1077, PW = 1400 0 100
la] =1-107% PW = 1400 | 100 0
| SNR = 12 dB | LFM [ NM |
o] =5-1077, PW = 1400 | 28 72
o] =5-1077, PW = 3500 | 44 56
o] =5-1077, PW = 7000 | 84 16

SNR but signal histograms move slightly to the left. If
thresholds are SNR-independent and optimized for SNR =
10 dB, LFM signal with |a| = 51077 will be classified as
NM for SNR = 11 and 12 dB. This is a consequence of NM
being an LFM signal with a = 0. As is shown in section 5,
LFM signals with higher |«| are classified correctly.

Figure 8 shows the calculated thresholds as a function of
SNR. These thresholds have been obtained by maximizing
the joint probability of correct classification for the differ-
ent groups of signals defined at each branch of the decision
tree (Figure 2 and 5). As is shown in Figure 8, thresholds
decrease with SNR.

When thresholds are SNR-dependent, the error in the
estimate of SNR is modeled by a gaussian random variable
with zero mean and o (dB) standard deviation.

5. PRACTICAL RESULTS

Global AMC performance depends on block length (N), the
pulse width (PW), the combination of the different block
classifications to provide a final signal modulation and the
threshold implementation. Classification performance im-
proves with N. Experimental results point out that below
SNR = 5 dB signal classification performance is very poor
because the instantaneous phase is unwrapped incorrectly.
SNR required for detection is lower than SNR for classifica-
tion and at the same time SNR needed for classification is
lower than SNR for demodulation. The main conclusions of
AMC performance are summarized next.

First of all, LFM classification depends basically on the
chirp rate magnitude. Slow LFM signals will be classified
as NM. Tables 1 and 2 show the confusion matrix for 100
Monte Carlo trials and various LFM signals. The probability
of correct classification (CCP) increases with |a| and PW,

Table 2: Confusion matrix. LFM signal, PW = 3500 sam-
ples, N = 1024. SNR-dependent (¢ = 0 dB, known SNR)
vs. SNR-independent (fixed for SNR = 10 dB) thresholds.

|a| =1-107°%, | Independent | Dependent
SNR (dB) | LFM | NM | LFM [ NM
10 - 16 100 0 100 0
18 96 4 100 0
20 7 93 100 0
|| =2-107% | Independent | Dependent
SNR (dB) LFM | NM | LFM | NM
10 - 16 100 0 100 0
18 100 0 100 0
20 100 0 100 0

Table 3: Confusion matrix. 2FSK signal, SNR =8 dB, Af =
0.5/Ts, N = 1024. SNR-dependent thresholds (¢ = 0 dB,
known SNR).

| SNR=8dB, Af =0.5/T.

LFM | FM | PSK | NM |

Ts = 350, PW = 3500 4 94 2 0
Ts = 350, PW = 7000 0 99 1 0
Ts = 230, PW = 3500 0 99 1 0
Ts = 230, PW = 7000 0 100 0 0

Table 1. In Table 2 an example of SNR-independent and
SNR-dependent thresholds is shown. When SNR increases,
LFM signal is classified from LFM to NM because thresholds
are fixed for SNR = 10 dB.

Concerning FM classification, it depends mainly on sig-
nal bandwidth. For example, 2FSK signal classification is in-
fluenced by symbol rate, frequency separation and the num-
ber of symbols. Table 3 shows the confusion matrix for 100
Monte Carlo trials and several 2FSK signals. T is the num-
ber of samples per symbol and Af is the frequency separa-
tion. Increasing 2FSK symbol rate and pulse width improves
the probability of correct classification.

PSK classification is affected by the number and mag-
nitude of phase transitions that generate high spikes in the
instantaneous frequency. 2PSK signals are easier to classify
than other PSK because all its frequency spikes are +0.5. Ta-
ble 4 presents the confusion matrix for different PSK modu-
lations. It is shown that classification enhances with symbol
rate for a fixed SNR.

Finally, PSK subclassification also depends on
Table 4: Confusion matrix. PSK signals, N = 1024, PW =
3500. SNR~dependent thresholds (o = 0 dB, known SNR).

SNR =10dB | SNR =16 dB
FM PSK FM PSK
2PSK, T, = 350 0 100 0 100
4PSK, T, =350 | 18 82 1 99
8PSK, Ts =350 | 22 78 2 98
SNR =10dB | SNR =12 dB
FM PSK FM PSK
2PSK, T, = 140 0 100 0 100
4PSK, T, = 140 7 93 0 100
8PSK, T, = 140 8 92 0 100
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Figure 9: PSK subclassification.

symbol rate and pulse width. Figure 9 shows the
overall CCP for PSK subclassification, defined as
CCP = (Prob{2PSK|2PSK} + Prob{4PSK|4PSK} +
Prob{MPSK|8PSK})/3. Overall CCP improves with
symbol rate and pulse width. Like other PSK classification
algorithms [1], separation between 4PSK and higher order
MPSK requires more SNR than classification between 2PSK
and 4PSK to achieve an objective CCP.

Table 5 presents the sensitivity (S, dB) for various modu-
lations, defined as the SNR value for which the CCP is higher
than 90 %. PW = 7000 and 2FSK frequency separation is
Af =0.5/Ts. “NC” means that signal CCP does not tend
to 100 % for high SNR, as it was shown on Table 1. Thresh-
olds in first, second and third columns are SNR-dependent
and SNR error estimation depends on standard deviation o.
In fourth column, thresholds are SNR-independent and op-
timized for an objective SNR of 10 dB. Table 5 shows a
performance degradation with o for signals close to thresh-
olds (Figure 8). On the other hand, when thresholds are
SNR-independent, operational degradation is not significant
except for low chirp rate LFM and narrow bandwidth 2FSK.

Other AMCs [6, 7] present better sensitivity due to the
processing gain of channelization, but CCP is poor for signals
with high instantaneous bandwidth. The algorithm in [3]
has better performance, but it is much more complex with at
least 10 signal features and a neural network based classifier.

6. CONCLUSION

We have designed a feature-based Automatic Modulation
Classifier for military applications. The AMC works in a
block-by-block basis. Signal features are extracted for each
block and then the block is classified following a hierarchi-
cal decision tree. A final decision is taken by processing
all the partial classifications. Signal classification depends
on block length and signal parameters. The introduction
of SNR~dependent thresholds improves signal classification.
When SNR is estimated, degradation is significative for sig-
nals whose features are close to thresholds.

The main achievement of the proposed AMC resides in
the low complexity of the feature extraction and the deci-
sion tree, allowing implementation with low latency and high
percentage of real time. Currently, this AMC is being im-
plemented in a FPGA platform.
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