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ABSTRACT

This paper addresses the issue of cough detection using only
audio recordings, with the ultimate goal of quantifying and
qualifying the degree of pathology for patients suffering from
respiratory diseases, notably mucoviscidosis. A large set of
audio features describing various aspects of the audio sig-
nal is proposed. These features are assessed in two steps.
First, their intrisic potential and redundancy are evaluated
using mutual information-based measures. Secondly, their
efficiency is confirmed relying on three classifiers: Artificial
Neural Network, Gaussian Mixture Model and Support Vec-
tor Machine. The influence of both the feature dimension
and the classifier complexity are also investigated.

1. INTRODUCTION

For children as well as for adults, cough is in pneumology the
commonest syndrom. It is a daily and very frequent reason
of seaking advices to the general practitioner (around 20% of
consultations for children below 4 years old), the paediatri-
cian and the pneumologist (for whom chronic cough repre-
sents one third of consultations). The impact of cough, no-
tably chronic coughing, on life quality can be important.

The severity of cough can be evaluated by asking patients
to fill in forms about their perception of the syndrom. How-
ever such a subjective assessment of cough has been shown
[1] to be only slightly correlated to its objective characteriza-
tion (using audio or video recordings for example). Medical
literature on this topic therefore underlines the lack of a tool
allowing the automatic, objective and reliable quantification
of this symptom. This latter step is notably anterior to any
correct evaluation of possible treatments.

Some approaches have been proposed to address the au-
tomatic detection of cough [2]. These systems generally cou-
ple various sensors to the audio signal (see [2] and references
in it): air coupled microphones, accelerometer, lapel micro-
phone, free field microphone, throat microphone or contact
sensor. Although reported results are encouraging [2], there
is currently no standardization and very few of these ap-
proaches led to a commercialization. In addition, following
the patient in ambulatory and 24h-long conditions (while pre-
serving his daily habits) remains an open problem.

As a result, cough quantification in the majority of hospi-
tals is still nowadays performed by a tedious task of manual
counting from audio recordings, or for validation by compar-
ison using simultaneous video recordings.

This paper focuses on the automatic detection of cough
using only the audio signal, as a preliminary and necessary
study for its further integration within a multimodal system.
On an acoustic point of view, cough is described as a forced
expulsive manoeuvre against a closed glottis that is associ-

ated with a characteristic sound [3]. The main difficulty in
detecting cough from audio recordings lies in its efficient
discrimination with other audio non-cough events such as
speech, laugh, or ambient noise.

The goal of this paper is to study which audio features
and classifier are the most suited for automatic cough de-
tection. For this, it is structured as follows. Section 2 pro-
poses a large set of possible audio features for this purpose.
The experimental protocol used for assessing these features
is described in Section 3. Section 4 first evaluates their sig-
nificance using mutual information-based measures. These
features are then integrated within three classifiers in Sec-
tion 5: Artificial Neural Network (ANN), Gaussian Mixture
Model (GMM) and Support Vector Machine (SVM). Finally
Section 6 concludes the paper.

2. AUDIO FEATURES FOR COUGH DETECTION

The various audio features that are used throughout this study
are briefly presented in the following. These features can be
divided into three categories: features describing the spectral
contents, measures of noise, and prosody-related features. In
our experiments, we also added the first and second deriva-
tives for each of these features in order to integrate the sound
dynamics. This leads to a total set of 105 descriptors whose
relevance will be assessed in Sections 4 and 5.

2.1 Features Describing the Spectral Contents

Several features characterizing the spectral shape have been
proposed in [4]. For a comprehensive description of the mag-
nitude spectrum, the well-known Mel Frequency Cepstral
Coefficients (MFCCs, [5]) are extracted. 13 MFCCs (includ-
ing the 0th coefficient) are used to represent the spectral dis-
tribution within 13 perceptual sub-bands. Besides, several
parameters describing the spectral shape are also employed.
The Spectral Centroid is defined as the barycenter of the am-
plitude spectrum. Similarly, the Spectral Spread is the dis-
persion of the spectrum around its mean value. The Spectral
Decrease is a perceptual measure quantifying the amount of
decreasing of the spectral amplitude [4]. Finally, the Spec-
tral Variation and Spectral Flux characterize the amount of
variations of spectrum along time and are based on the nor-
malized cross-correlation between two successive amplitude
spectra [4].

2.2 Measures of Noise

Quantifying the level of noise in the audio signal is of
interest for describing the cough sound. For this pur-
pose, several measures are here suggested. First, the Har-
monic to Noise Ratio (HNR) is calculated for the fre-
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quency ranges [0-0.5kHz], [0-1.5kHz], [0-2.5kHz] and [0-
3.5kHz] using the Voice Sauce toolkit freely available
at: http://www.ee.ucla.edu/∼spapl/voicesauce/index.html.
These latter parameters are respectively denoted HNR05,
HNR15, HNR25 and HNR35 in the remainder of this pa-
per. The Cepstral Peak Prominence (CPP) is used as it
has been shown to be correlated with the degree of breath-
iness in voice [6]. The Spectral Flatness measures the nois-
iness/sinusoidality of a spectrum (or a part of it). As sug-
gested in [4], we here calculate the spectral flatness in the
four following frequency bands: [0.25-0.5kHz], [0.5-1kHz],
[1-2kHz] and [2-4kHz]. The Zero-Crossing Rate quantifies
the number of times the signal crosses the zero axis. It is
expected that the greater the amount of noise, the higher the
amount of zero-crossing. As a last parameter quantifying the
amount of noise in the audio signal, the Chirp Group De-
lay (chirp GD) is a phase-based measure proposed in [7] for
highlighting turbulences during glottal production.

2.3 Prosody-related Features

In speech processing, prosody refers to the rhythm, stress
and intonation of speech. It is generally reflected by clues
such as volume, pitch and duration. We therefore use mea-
sures of energy and loudness which basically are informative
mainly about the presence of audio activity. As it is known
[3] that for a three-phase cough sound, the last phase presents
voicing, the fundamental frequency is estimated using the
STRAIGHT technique [8].

3. EXPERIMENTAL PROTOCOL

The database consists of audio signals captured by a cheap
standard MP3 recorder in an hospital context. They were
kindly provided by the belgian mucoviscidosis center at the
Cliniques Universitaires Saint-Luc. Subjects are patients suf-
fering from mucoviscidosis who had to spend a night at the
hospital. The recorder was placed on their bedside table
during the evening. Recordings then contain parasitical sig-
nals such as talking, laughing and TV, music or other types
of noise, which can be confusing for detecting cough. The
database is made of 5 minute-long recordings from 9 differ-
ent patients, manually labeled in cough and non-cough seg-
ments.

Audio signals were downsampled from 44.1 kHz to 16
kHz. Features introduced in Section 2 were extracted every
10 ms on Hanning windows whose length is 25 ms. The rele-
vance of these features is assessed in Sections 4 and 5. First,
an evaluation based on the Mutual Information (MI) is led in
Section 4. This approach is advantageous as it is independent
of any classifier. A method of feature selection based on MI
is employed to reduce dimensionality. In a second step, these
features are assessed in Section 5 by being integrated within
three classifiers: ANN, GMM and SVM.

4. MUTUAL INFORMATION-BASED ASSESSMENT
AND FEATURE SELECTION

4.1 Background on Mutual Information

The problem of automatic classification consists in finding a
set of features Xi such that the uncertainty on the determi-
nation of classes C is reduced as much as possible [9]. For
this, Information Theory [10] allows to assess the relevance
of features for a given classification problem, by making use

of the following measures (where p(.) denotes a probability
density function):

• The entropy of classes C is expressed as:

H(C) =−∑
c

p(c) log2 p(c) (1)

and can be interpreted as the amount of uncertainty on
their determination.

• The mutual information between one feature Xi and
classes C:

I(Xi;C) =∑
xi
∑
c

p(xi,c) log2

p(xi,c)

p(xi)p(c)
(2)

can be viewed as the information the feature Xi conveys
about the considered classification problem, i.e. the dis-
crimination power of one individual feature.

• The joint mutual information between two features Xi,
Xj, and classes C can be expressed as:

I(Xi,Xj;C) = I(Xi;C)+ I(Xj;C)− I(Xi;Xj;C) (3)

and corresponds to the information that features Xi and
Xj, when used together, bring to the classification prob-
lem. The last term can be written as:

I(Xi;Xj;C) =

∑
xi
∑
x j
∑
c

p(xi,x j,c)· log2

p(xi,x j)p(xi,c)p(x j,c)

p(xi,x j,c)p(xi)p(x j)p(c)
(4)

An important remark has to be underlined about the sign
of this term. It can be noticed from Equation 3 that a pos-
itive value of I(Xi;Xj;C) implies some redundancy be-
tween the features, while a negative value means that fea-
tures present some synergy (depending on whether their
association brings respectively less or more than the ad-
dition of their own individual information).

4.2 Mutual Information-based Assessment

To evaluate the significance of the audio features proposed in
Section 2, the following measures are computed:

• the relative intrinsic information of one individual fea-

ture I(Xi;C)
H(C) , i.e. the percentage of relevant information

conveyed by the feature Xi,

• the relative redundancy between two features
I(Xi;Xj ;C)

H(C) ,

i.e. the percentage of their common relevant information,

• the relative joint information of two features
I(Xi,Xj ;C)

H(C) ,

i.e. the percentage of relevant information they convey
together.

For this, Equations 1 to 4 are calculated. Probability den-
sity functions are estimated by a histogram approach. The
number of bins is set to 50 for each feature dimension, which
results in a trade-off between an adequately high number for
an accurate estimation, while keeping sufficient samples per
bin. Class labels correspond to the presence or not of a cough
event.

Since 105 audio features were extracted, an exhaustive
presentation of results cannot be detailed here. For the sake
of clarity, Table 1 displays the MI-based values for the 14
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MFCC 0 47.2 59.0 56.3 57.5 55.4 54.7 54.2 53.6 54.2 54.0 53.0 53.0 52.9 52.9
Zero-Crossing 15.1 26.8 41.8 35.0 38.0 41.8 40.4 38.9 36.1 50.0 40.2 37.0 39.1 38.0

HNR05 7.6 1.8 15.9 45.0 37.6 35.9 28.1 29.8 32.7 37.9 32.1 30.4 30.2 28.0
MFCC 1 20.5 22.6 2.6 30.8 39.2 43.4 43.3 39.9 37.4 51.0 41.0 36.5 40.4 39.0
Chirp GD 18.0 15.0 5.4 17.8 26.2 43.7 42.9 35.2 33.0 46.1 38.7 32.2 37.1 31.8
MFCC 4 16.8 9.2 5.2 11.7 6.7 24.2 33.2 38.5 32.6 42.8 35.7 35.0 38.7 37.3
MFCC 3 4.1 -2.5 0.1 -1.4 -5.6 2.1 11.1 26.5 20.5 37.1 33.4 24.2 27.2 26.7
MFCC 8 7.4 1.7 0.9 4.7 4.8 -0.5 -1.6 13.8 22.9 38.9 34.9 26.3 29.3 25.2

F0 -1.6 -3.9 -11.1 -1.3 -1.4 -3.0 -3.9 -3.6 5.0 45.4 27.6 21.8 24.0 21.1
HNR15 22.9 6.7 6.9 9.7 10.0 11.4 4.2 4.9 -10.7 29.0 41.5 37.7 40.3 38.1
MFCC 5 15.3 7.7 5.9 10.9 8.6 9.9 -1.3 0.0 -1.1 9.7 21.1 30.1 29.6 30.4
MFCC 2 7.7 3.3 0.1 7.8 7.5 2.7 0.4 0.9 -2.9 5.9 4.4 13.5 28.2 24.9
MFCC 6 10.6 3.9 3.1 6.6 5.3 1.7 0.1 0.7 -2.3 6.1 7.8 1.5 16.2 27.1

Flatness 2-4 7.3 1.8 2.0 4.8 7.4 -0.1 -2.6 1.6 -2.7 4.9 3.6 1.5 2.1 13.0

Table 1: Mutual information-based measures for the 14 first selected features (respecting the ranking). On the diagonal: the
relative intrinsic information. In the bottom-left part: the relative redundancy between the two considered features. In the
top-right part: the relative joint information of the two considered features.

first features (respecting the ranking) selected by the algo-
rithm that will be described in Section 4.3. The diagonal
indicates the percentage of relevant information conveyed
by each feature. It is worth noting that the selection tech-
nique accounts for the redundancy and synergy between fea-
tures. Selected features are therefore not necessarily the ones
presenting the highest individual discrimination power. In
our results, we observed that features conveying the great-
est relative intrinsic information are: MFCC 0 (47.25%), the
loudness (46.56%), a measure of energy (39.88%), HNR35
(38.74%) and HNR25 (35.41%). The three first features are
related to the signal energy and are particularly informative
about the presence of an audio event. Although individually
interesting, these features are strongly redundant, with e.g a
value of 41.63% of relative redundancy between MFCC 0
and the loudness. A strong redundancy (30.84%) is also ob-
served between HNR35 and HNR25. The algorithm of fea-
ture selection presented in Section 4.3 therefore tends to give
priority to slightly redundant (or even synergic) features.

The top-right part of Table 1 contains the values of rel-
ative joint information of two features, while the bottom-
left part shows the relative redundancy between two fea-
tures. The best combination of two features is MFCC 0
with the zero-crossing rate, bringing together 59% of rela-
tive joint information. Inspecting the values of redundancy,
it is worth observing that F0 extracted with STRAIGHT is
synergic with all 13 other features. The set of 14 features
is relatively weakly redundant, with a maximum relative re-
dundancy of 22.9% between MFCC 0 and HNR15, and a
maximum synergy value of -11.1% between F0 and HNR05.
Note the absence of first or second derivative features in the
selected subset.

4.3 Mutual Information-based Feature Selection

Several techniques of feature selection have been proposed in
the literature [9]. An important category of such methods is
the approach relying on mutual information [11]. Computing

MI from data requires the estimation of probability densities,
which cannot be accurately done in high dimensions. This
is why a majority of feature selection algorithms use mea-
sures based on up to three variables (two features plus the
class label). Therefore, various MI-based strategies for fea-
ture selection have been proposed, all trying to deal with the
issue of redundancy management. In this paper, we use the
following algorithm which is known [11] to provide among
the best results. Let us denote F={X1,X2,...,XN} the initial
set of N features, and Sk the selected subset (with Sk ⊆ F) of
k features at step k. The method is a greedy algorihm which
starts from an empty set and which selects at each step k the
feature Yk maximizing:

Yk = arg max
Xi∈F\Sk−1

[I(Xi;C)− max
Yj∈Sk−1

I(Xi;Yj;C)] (5)

considering that the redundancy between Xi and the se-
lected subset Sk−1 is dominated by the most redundant fea-
ture in it.

It is confirmed in Table 1 that selected features exhibit
weak redundancy values, as it is penalized via the term in
I(Xi;Yj;C) in Equation 5. It is also interesting to note that
selected features arise from the three categories: prosody-
related characteristics (MFCC 0 and F0), noise measures
(zero-crossing rate, HNR05, chirp GD, HNR15 and flatness
2-4), as well as spectral-based parameters (MFCC 1 to 8).
Since these features arise from complementary sources of in-
formation, it can be expected that redundacy has been appro-
priately taken into account.

5. CLASSIFIER-BASED ASSESSMENT

The use of three types of classifiers is here investigated:
ANN, GMM and SVM. We rely on Matlab implementa-
tions for ANN and GMM, and on the Torch toolbox [12] for
SVM. Evaluation is achieved using a 10-fold cross valida-
tion framework. This means that training is led on 90% of the
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database (randomly chosen), and the 10% remaining are used
for the test. This operation is repeated 10 times (with exclu-
sive subsets for testing), so as to cover the whole database for
the evaluation. The system is then generally assessed through
its averaged error rate. However, given that the database
is strongly unbalanced, i.e the proportion of cough events
(compared to non-cough) is highly under-represented, we
preferred to rely on Receiver Operating Characteristic (ROC)
curves. A ROC curve shows the True Positive Rate (TPR, or
sensitivity) as a function of the False Positive Rate (FPR, or
1-specificity) as a discrimination threshold θ is varied. As a
single measure of performance of the ROC curve, we defined
the Revised Error Rate (RER) as:

RER= argmin
θ

�
(1−TPR(θ))2 +FPR(θ)2 (6)

Indeed, an ideal classifier being characterized by a
TPR = 100% and a FPR = 0%, a single measure of perfor-
mance is the Euclidian distance from the top-left corner to
the ROC curve. As a consequence, the lower RER, the better
the system. This criterion implies that an equal importance is
given to both TPR and FPR. Based on a medical advice, TPR
or FPR could be emphasized by weighting its importance in
Equation 6.

5.1 ANN-based Classification

An Artificial Neural Network (ANN) is a method of classi-
fication using an interconnected group of artificial neurons,
and which allows a non-linear statistical modeling of the
class posterior. It is here used for its ability to model com-
plex relationships between inputs (audio features) and out-
puts (posterior probability of belonging to a given class).

Our ANN implementation relies on the Matlab Neural
Network toolbox. The ANN is made of a single hidden layer
with a variable number of neurons whose activation function
is an hyperbolic tangent sigmoid transfer function. Figure 1
displays the evolution of the ROC curves as a function of the
number of neurons using the 20 first selected features. It is
observed that the performance increases with the number of
neurons. For information, a RER of 13.5% is achieved with
2 neurons, 9.26% with 32 and 8.78% with 64 neurons.
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Figure 1: ROC curves obtained with the ANN classifier using
20 features and various numbers of neurons in the hidden
layer.

The impact of the number of features on the classifier per-
formance is illustrated in Figure 2, using 64 neurons in the

hidden layer. Performance with 5 or 10 features is largely
under what is obtained with more than 20 features. However,
ROC curves carried out with 20, 50 and 105 features are very
close, with respective RERs of 8.78%, 8.13% and 7.94%. In
other words, thanks to the efficient feature selection algo-
rithm described in Section 4.3, using only 20 features gives
similar results to what is reached with 105 features, allowing
an important dimensionality reduction.
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Figure 2: ROC curves obtained with the ANN classifier us-
ing 64 neurons in the hidden layer and various numbers of
features.

For the best ANN configuration (64 neurons with 105
features), the following performance measures are obtained:
TPR=94.27%, FPR=5.50% and RER=7.94%.

5.2 GMM-based Classification

A Gaussian Mixture Model (GMM) is a technique of clas-
sification in which the conditional probability for each class
is approximated by a mixture of Gaussian distributions. In
our Matlab implementation, GMMs are first initialized by a
K-Means clustering step. The same number of Gaussians is
used to model each class. Figure 3 plots the ROC curves
using 20 features and various numbers of Gaussians in the
mixture. It is observed that cough detection gets better with
an increasing number of Gaussians.

0 5 10 15 20
60

65

70

75

80

85

90

95

100

False Positive Rate (%)

T
ru

e
 P

o
s

it
iv

e
 R

a
te

 (
%

)

 

 

1 Gaussian

2 Gaussians

4 Gaussians

8 Gaussians

16 Gaussians

Figure 3: ROC curves obtained with the GMM classifier us-
ing 20 features and various numbers of Gaussians in the mix-
ture.

In order to illustrate the influence of the feature dimen-
sion on the system, Figure 4 displays the evolution of RER
as a function of the number of features using 8 Gaussians.
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As it was the case for the ANN classifier, it turns out that
using 20 features gives among the best results, and that the
contribution when considering more features is minor.
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Figure 4: Evolution of RER as the number of features in-
creases for a GMM classifier with 8 Gaussians.

For the best GMM configuration (16 Gaussians with 20
features), the following performance measures are obtained:
TPR=95.20%, FPR=5.73% and RER=7.48%. First, it
is interesting to note that for audio-based cough detection
GMM outperforms ANN, with a reduction of 0.46% of RER.
Secondly, it is worth emphasizing that only 20 features were
used to reach that performance. For the same feature dimen-
sion, ANN obtains a RER of 8.78% with 64 neurons in the
hidden layer.

5.3 SVM-based Classification

A Support Vector Machine (SVM) is a method of supervised
learning able to analyze data and recognize patterns. It is
here used as a non-probabilistic binary linear classifier. The
initial feature space is mapped using a Gaussian kernel so
as to maximize the final linear separability between classes.
The criterion of good separability is that the hyperplane of
decision should have the largest distance to the closest train-
ing data points of any class.

Experiments are here performed based on the SVM im-
plementation available in the Torch toolbox. Using 20 fea-
tures, as it was shown with ANN and GMM to convey almost
all the information contained in the large feature set, we ob-
tained the following performance measures: TPR=81.87%,
FPR=0.32% and RER=18.13%. SVM is then clearly out-
performed by the 2 other classifiers, the GMM approach pro-
viding the best identification rates.

6. CONCLUSION

This paper focused on the problem of cough detection rely-
ing only on audio recordings, as a preliminary and necessary
study before integrating other sensors. A large set of fea-
tures characterizing various aspects of the audio signal was
proposed. These features were first assessed based on infor-
mation theoretical measures, evaluating not only their intrin-
sic discrimination power, but also their redundancy and com-
plementarity. Secondly, cough detection on recordings from
patients suffering from mucoviscidosis was performed with
three types of classifier: SVM, ANN and GMM. Impacts
of feature dimension (reduced using a mutual information-
based feature selection algorithm) as well as of the classifier
complexity were analyzed. The best results were obtained
with the GMM approach using only 20 features, reporting a
sensitivity of 95.2% and a specificity of 94.3%.
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