
POPULATION MONTE CARLO METHODOLOGY A LA GIBBS SAMPLING
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ABSTRACT

Population Monte Carlo (PMC) algorithms iterate on sets of
samples and weights to approximate a stationary target distri-
bution. The target distribution is often the a posteriori distri-
bution of a set of unknowns of interest given observed data
and the employed model. The accuracy of the estimation de-
pends on many factors including the number and “quality”
of the generated samples. In this paper, we propose a PMC
algorithm that can be used for high-dimensional models and
that is built in the spirit of the Gibbs sampling method. We
demonstrate the proposed approach on the classical problem
of estimating the frequencies of multiple sinusoids. The sim-
ulation results show the accuracy of the estimates and their
comparison with the results of an alternative approach.

Index Terms— Population Monte Carlo, Gibbs sampling,
Rao-Blackwellization, high dimensional systems

1. INTRODUCTION

The population Monte Carlo (PMC) is a methodology for ap-
proximating joint distributions of unknowns. The approxima-
tion is with random measures that are represented by particles
(samples) and weights [1]. The method is iterative, where at
each iteration samples of the unknowns are generated from a
known distribution. These particles are then assigned weights
according to the importance sampling principle [2]. The par-
ticles and their weights from all the iterations are used for
approximation.

The PMC has some resemblance to Markov chain Monte
Carlo (MCMC) methods. However, the particles of PMC, un-
like in MCMC methods, have different weights, and the PMC
does not require burn-in periods.

The key principle for constructing the approximations
with PMC is importance sampling, which is a technique for
estimating properties of a particular distribution with samples
generated from a different distribution. This principle is also
employed in the well known particle filtering methods [3].
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Recently, importance sampling has also been used in a se-
ries of papers with the objective of finding the maximum
likelihood estimate of frequencies of multiple sinusoids [4],
parameters of chirp signals [5], and directions of arrival [6].

As with every method based on importance sampling, the
crucial factor for good performance is the choice of generat-
ing functions of the particles. In this paper, we propose that
the generating functions be alternating conditionals, thereby
mimicking the idea behind Gibbs sampling [7]. With this
approach, it is expected, that one can generate particles in
high dimensions more efficiently. We demonstrate the perfor-
mance of the proposed approach on the problem of frequency
estimation of 10 sinusoids from only 25 observations.

The paper is organized as follows. In the next section
we provide a general formulation of the problem. Then, in
Section 3, we describe the PMC method and briefly review
some recent advances. In Section 4, we propose the Gibbs
sampling-inspired PMC and the details of its implementation.
We demonstrate the use and performance of the method on
the problem of frequency estimation of multiple sinusoids in
Section 5. We conclude the paper with Section 6.

2. PROBLEM FORMULATION

We observe a set of data y which are modeled according to

y = h(θ,w), (1)

where y ∈ Rdy×1 (or Cdy×1) is a vector of observations, θ ∈
Rdθ×1 is a vector of unknowns, w ∈ Rdw×1 (or Cdw×1) is a
noise vector with a known parametric distribution (typically
dw = dy), and h : Rdθ × Rdw → Rdy (or h : Rdθ × Cdw →
Cdy ) is a known function of the unknowns and the noise.

For the unknowns, we assume that we have the a priori
distribution π(θ), and that given the noise probability dis-
tribution, we can write the conditional distribution p(y|θ).
Given the observation vector y, π(θ), and p(y|θ), we want
to compute the posterior distribution p(θ|y), which can be
written as

p(θ|y) ∝ p(y|θ)π(θ), (2)
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where ∝ symbolizes proportionality. We refer to p(θ|y) as
our target distribution. In some cases, we may not be inter-
ested in the complete posterior of θ, and instead, only in the
posterior of some subset of θ.

3. A BRIEF REVIEW OF THE PMC METHOD

The PMC method was introduced in [1]. The origins of PMC
can be traced back in the works of Von Neumann, Metropolis,
Ulam and others [8]. In [1], PMC was applied to Bayesian
modeling of a Gaussian mixture and ion channel models,
where it was proposed that the generating distributions be
split into classes of distributions with different parameters.
As the generation of particles with iterations proceeds, the
quality of the generated particles improves. This is a very
important feature of PMC. For example, it has been shown
that PMC can be used for variance reduction [9], where a
mixture of generating functions can be iteratively optimized
to achieve a minimum asymptotic variance for a function of
interest.

In our previous work with PMC, we have addressed
the problem of estimation of frequencies of multiple sinu-
soids [10]. There we have exploited the principle of Rao-
Blackwellization to improve the efficiency of the method by
marginalizing the unwanted parameters (all the parameters
except the frequencies). In other words, we applied the PMC
only on the nonlinear parameters of the model. Also, we
used several PMC algorithms that operated in parallel, each
of them producing samples and weights of a subset of the
parameters.

4. PMC IN THE SPIRIT OF GIBBS SAMPLING

Gibbs sampling is an algorithm for generation of particles that
represent samples from the joint probability distribution of
two or more unknowns [7]. The particles have equal weights
and they approximate the joint distribution or are used for
computing integrals under the joint distribution. Gibbs sam-
pling belongs to the larger class of MCMC methods and is
often used for Bayesian inference [11].

In MCMC methods, sampling from a target distribution is
achieved by constructing a Markov chain whose equilibrium
distribution is the target distribution. In general, at iteration j,
one proposes a sample (particle) from a proposal distribution
q(θ|θj−1), i.e., θj ∼ q(θ|θj−1), [11]. We either accept or
reject the proposals, where rejection means that the particle
of iteration j remains the same as that from iteration j − 1.
Gibbs sampling is a special type of MCMC sampling where
each θk,j (where θk,j is the k−th element of θ at iteration j)
is sampled from the conditional distribution p(θk|θ−k,j−1),
where θ−k,j−1 is the vector of all the parameters in θ except
for θk and the remaining conditioning parameters are at their

current values (i.e., we use the last drawn values for the con-
ditioning parameters). In Gibbs sampling the drawn values
are always accepted.

Irrespective of which MCMC approach we use, we have
issues with convergence assessment, that is, we have to run
the simulations long enough so that the distribution of the
drawn particles gets close to the target distribution. This prob-
lem, however, can be put away if we introduce importance
sampling. In other words, if a particle θ(m) is obtained from
q(θ) and we want that θ(m) is used in the approximation
of p(θ), then we need to assign the particle an importance
weight given by

w(m)∗ =
p(θ(m))
q(θ(m))

. (3)

The weights and the particles form a random measure, χ =
{θ(m), w(m)}M

m=1, where the w(m)s are normalized weights
and M denotes the total number of samples. In PMC, we
implement the generation of particles through iterations. For
example, at iteration one, we get the random measure χ1, at it-
eration two, the random measure χ2 and so on. The objective
is that, as we proceed with iterations, we improve the accu-
racy of the approximation. To that end, for obtaining better
generating functions, one can use the approximations from
the previous iterations. One way of exploiting the previous
iteration is to employ resampling (another operation that is
common in particle filtering) [3]. That is, we construct new
generating functions by using particles from the previous it-
eration that are selected based on their weights.

Here we propose a general approach for constructing gen-
erating functions for the PMC method. We draw the particles
of particular unknowns from a conditional distribution, where
the conditioning is on the remaining unknowns. We basically
mimic the Gibbs sampling idea, where as explained, we repli-
cate the same steps except that our conditionals are not ob-
tained from the target distribution. Note that we apply PMC
because we cannot generate from the conditionals of the tar-
get distribution, and therefore we work with a different joint
distribution, but one that allows for easy drawing of particles.

We now describe the specific steps of the proposed
scheme. At iteration j = 0, we initialize the particle streams
by drawing them from the prior π(θ). We draw M particles,
and to each of them we assign the weights according to

w(m)∗

0 = p(y|θ(m)
0 ). (4)

We assume now that at iteration j − 1, we have the par-
ticles and the weights χj−1 = {θ(m)

j−1, w
(m)
j−1}M

m=1. We also
recall that θ(m)

j−1 = [θ(m)
1,j−1, θ

(m)
2,j−1, · · · , θ(m)

dθ,j−1]
#. The parti-

cles at the j−th iteration are obtained as follows:

Step 1 Randomly choose the order of generation of the pa-
rameters θk. Let the order be l1, l2, · · · , ldθ .
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Step 2 For m = 1, 2, · · · , M , proceed as follows. Choose
a particle for conditioning based on the normalized
weights of the particles from the previous iterations,
which amounts to sampling from a multinomial dis-
tribution defined by the normalized weights of the
particles. Let the selected particle be with index λm.
Then generate new particles according to

θ(m)
l1,j ∼ ql1,j

(
θl1 |θ

(λm)
l2,j−1, θ

(λm)
l3,j−1, · · · , θ(λm)

ldθ
,j−1

)

for n = 2, 3, · · · , dθ − 1,

θ(m)
ln,j ∼ qln,j

(
θln |θ

(m)
l1,j , · · · θ(m)

ln−1,j ,

θ(λm)
ln+1,j−1 · · · , θ(λm)

ldθ
,j−1

)

and

θ(m)
ldθ

,j ∼ qldθ
,j

(
θldθ

|θ(m)
l1,j , θ(m)

l2,j , · · · , θ(m)
ldθ−1,j

)
.

Step 3 Computation of the weights by

w(m)∗

j =
p

(
y|θ(m)

j

)
p

(
θ(m)

j

)

∏dθ

n=1 qln,j(θ
(m)
ln,j)

.

The computed weights are stored as they were computed
by the last expression. The particles from all the iterations are
normalized at the end for best possible approximation of the
distribution of interest. However, the weights from Step 3 are
also separately normalized before starting the next iteration,
so that one can use the normalized weights. The method can
stop at any iteration.

We note that if we cannot generate θ(m)
0 from π(θ), we

can use a convenient generating function q(θ), and therefore
the initial weights of the particles are

w(m)∗

0 =
p(y|θ(m)

0 )p
(
θ(m)

0

)

q(θ(m)
0 )

. (5)

5. FREQUENCY ESTIMATION OF MULTIPLE

SINUSOIDS

In this section we demonstrate the proposed method on the
problem of frequency estimation of complex sinusoids in
noise [4]. We model the data as

yt =
K∑

k=1

akei(2πfkt+φk) + vt, t = 1, 2, ..., dy (6)

where i =
√
−1, 0 < f1 < f2 < ... < fK < 1, and ak >

0 and φk are the amplitude and phase of the k−th sinusoid,
respectively. The noise in the collected data, vt, is a white
complex Gaussian noise of the form

vt ∼ CN (0, σ2
v)

with real and imaginary components that are independent and
come from N (0, σ2

v
2 ). The vector of unknowns is θ = [a1,

φ1, f1, ..., aK , φK , fK , σ2
v ]#, and therefore the space of un-

knowns has dimension 3K + 1. The prior of the unknowns is
proportional to a constant, i.e.

p(θ) ∝ const. (7)

over the support of θ.
We are primarily interested in the frequencies, so we

work with the marginalized PMC (MPMC) method as de-
scribed in [12]. Thus, the parameter space of interest is
θ = [f1, f2, ..., fK ]#. The posterior p(θ|y) can be obtained
in a closed analytical form [12], but one cannot draw samples
from it. Here, we apply the proposed scheme where each
of the conditionals is a truncated Gaussian centered at the
selected particle from the previous iteration. The condition-
ing parameters are used for deciding the truncation points
of the Gaussian. For example, if the frequency fk,j needs
to be generated, we use as a generating function the trun-
cated Gaussian, which is centered at f (m)

k,j−1 with cutoff points
f (m)

k−1,∗, and f (m)
k+1,∗, where the ∗ stands for the most recent

sample of fk−1 and fk+1, respectively.1 The importance of
this choice is demonstrated in the experimental results shown
below. All the frequency estimates are minimum mean square
error estimates.

We tested the method by conducting simulations as fol-
lows. We simulated dy = 25 observations with K = 10
sinusoids, whose frequencies were f1 = 0.2, f2 = 0.3, f3 =
0.32, f4 = 0.5, f5 = 0.52, f6 = 0.7, f7 = 0.75, f8 = 0.8,
f9 = 0.82, and f10 = 0.9, with amplitudes ak = 1, for k =
1, 2, ..., 10, and phases φk = 0, for k = 1, ..., 4, 6, ..., 10
and φ5 = π/4, respectively. The value of the noise power
was defined by using the signal-to-noise ratio (SNR)

SNR = 10 log10
a2

σ2
v

measured in dB.
For comparisons, we employed the MPMC method,

which also uses the truncated Gaussians with the same centers
but with truncating points obtained at the previous iteration
only (so, they are not the most recent drawings). We also
found the Cramér-Rao lower bounds (CRLBs) for the fre-
quencies of interest. When implementing the algorithms,
we used the Yule-Walker method for getting the initial esti-
mates [13].

The performance of the algorithms was quantified in
terms of the mean square error (MSE) given by

MSE(fk) =
1
R

R∑

r=1

(f̂k(r)− fk)2, (8)

1Note that when k = 1, the lower cutoff point is 0, and when k = K the

upper cutoff point is 1.
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Fig. 1. MSE as a function of iteration.

where R represents the number of realizations, f̂k(r) denotes
the estimate obtained in the r-th run, and fk is the true value
of the frequency.

Figure 1 shows the MSE of the two algorithms as a func-
tion of iterations (the maximum number was J = 20 itera-
tions). The SNR was 5 dB, M = 900 particles, and R = 500
runs. At each run, the estimates at the j−th iteration were ob-
tained from all the generated particles and associated weights
up to that iteration. In the figure, the performance of the
novel scheme is denoted by G-MPMC. From the graphs, it is
clear that G-MPMC outperforms the MPMC. The G-MPMC
estimates of the unknown frequencies converge much more
quickly to the true values.

In Figure 2, we see the MSE for different sizes of parti-
cle populations (M was changed from 300 to 1800 particles),
SNR = 5 dB, J = 10 iterations, and R = 500 runs. At each
run, the estimates were obtained from all the particles after
J = 10 iterations. The plots show that the G-MPMC can
achieve the same accuracy with a smaller amount of particles
than the MPMC algorithms, and therefore, it is less computa-
tionally expensive.

The MSE for various values of SNR is shown in Figure 3.
All the points on the plot were averaged over R = 500 runs
with a particle size of M = 900 and for J = 10 iterations.
The proposed method again outperforms the MPMC consid-
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erably.
We point out that in all the simulations, we present the re-

sults of point estimates. The particles and their weights pro-
vide, however, much more information. They can readily be
used to obtain other types of statistical inference.

Finally, Table 1 shows the number of poor estimates (de-
fined as estimates of f̂ where |fk − f̂k| > 0.1 is true for at
least one k, and k = 1, 2, · · · , 10) of the MUSIC (Multi-
ple Signal Classification) algorithm, the Yule-Walker method,
the MPMC method, and the proposed G-MPMC method. All
the data were averaged over R = 500 runs with SNR = 5.
Clearly, the G-MPMC had the best performance again.

6. CONCLUSION

The most critical issue in applying population Monte Carlo
methods is the choice of generating functions of the particles.
In this paper, we proposed that these functions are alternating
conditionals, as in the case of Gibbs sampling. Thus, the over-
all proposal function is a product of conditionals, and where
the sampling from each conditional is easy. It is expected
that with alternating conditionals one can efficiently gener-
ate particles in high dimensions. The method was tested on
the problem of frequency estimation of 10 sinusoids from 25
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observations only. The obtained results show very good per-
formance of the method.
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