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ABSTRACT

We discuss the problem of interpreting clumps (or clusters) of nu-
clei in histological images as unions of elliptical shapes, each el-
lipse representing one nucleus. The difficult part is to rank vari-
ous interpretations, involving different numbers of ellipses, and our
approach is an information theoretic one where the score for each
interpretation is computed using the minimum description length
(MDL) principle for a simple parametric family of models. We
show how to evaluate MDL for the proposed family using the code-
length of an implementable method, which does not involve any
asymptotic approximations. We then show how to locally improve
the ellipse parameters of a given initial interpretation so that its
MDL score is minimized. The initial and final MDL scores of each
competing interpretation are then used for deciding which interpre-
tation is the least redundant. We perform a preliminary study in-
volving human subjects for proposing interpretations of the clumps
and we also obtain interpretations by an improved version of the
existing ellipse fitting algorithm SNEF. We study the variability be-
tween the human subject interpretations and compare it with the
variability of SNEF algorithm. Finally, the results are examined
by a pathology expert for assessing the quality of the MDL based
decisions.

1. INTRODUCTION

Histological images are images of thin tissue samples, which are
analyzed by expert pathologists for providing medical diagnostic
and evaluating the grade of the disease. Every pathologist may an-
alyze daily tens of hematoxylin and eosin (H&E) stained histolog-
ical images. Each such image may contain hundreds of nuclei and
a number of image analysis tasks are implicitly performed by the
pathologists for deciding a certain diagnostic: segmentation of nu-
clei and description of their features like orientation, eccentricity,
distance among them. Designing algorithms for solving these im-
age analysis tasks will provide valuable assistance to the pathologist
and also constitutes a first step towards automatic diagnosis.

Ideally, if the section of the tissue will be thin enough we will
observe in the image only one layer of nuclei, where there will be
no overlaps. However, the thickness of the sections is in practice
much higher than a single nuclei layer, so that we observe a three-
dimensional volume of tissue, whose projection on the bidimen-
sional image will result in overlapping nuclei. Also, diseased tis-
sue will present cells with abnormal size of their nuclei, which are
almost touching in the bidimensional H&E image. Hence, a stan-
dard segmentation technique applied to the H&E image will face
two kinds of tasks: first, segment the well separated nuclei which is
easily done even by a simple thresholding operation; second, seg-
ment the clump of overlapping nuclei and interpret them into the
constituent nuclei. Most segmentation methods will find easily the
contours of separated nuclei and the contours of the clumps, but
will not be able to provide an interpretation of the clumps in terms
of overlapping nuclei.

The interpretation of clumps is difficult because it involves
touching and overlapping objects, and identifying nuclei orienta-
tions and sizes require fitting overlapping objects, thus is not akin

to segmentation. There are a number of techniques proposed for
interpreting a clump as a set of overlapping regular shapes. For
the separation one may use some prior knowledge about the shape
of the objects. In the case of cell nuclei the most typical assump-
tions about the shapes are convexity (i.e. [1, 2]), ellipticity [3], or
both [4]. Algorithms which rely on the assumption that objects are
convex generally try to find concavity points from the extracted con-
tours and link them to obtain lines that split clustered objects into
individual objects. However the interpretation of overlapping ob-
jects is not provided by these methods. Ellipticity assumption will
help in case of overlapping and touching objects. Unfortunately,
the previous approaches of fitting ellipses relied essentially on the
first binary segmentation results, which for most of H&E images are
noisy and unreliable. In addition, the information of the gradients
inside the clustered objects, which could give important clues of
separation lines, is rarely used. The algorithm SNEF, which was re-
cently proposed [5], fits a number of ellipses to the clump, by using
jointly gradient and thresholded contour information. SNEF created
a large number of candidate ellipses and used a heuristic process for
selecting surviving ellipses. It had a number of hard-wired options
leading to a unique interpretation of the clump image, which was
satisfactory in the clear cases situations analyzed. However, some-
times it is preferable to have at the output of the image analysis task
a number of alternative solutions and evaluate by a structure finding
method the likelihood of each. After determining the structure with
the highest likelihood according to a principled criterion, one may
decide on the best possible interpretation, having the least value of
criterion, or one may also continue to the next stages of statistical
inference with a list of plausible solutions, each being ranked and
weighted by its associated criterion value. The goal in this paper is
to introduce a principled MDL evaluation scenario for clump inter-
pretations.

We review in Section 2 the algorithm SNEF. In Section 3 we
introduce the MDL criterion for ranking several competing inter-
pretations of a clump, based on the codelength of an implementable
coding scheme and we present an algorithm for locally improving a
given configuration of ellipses so that the MDL score is minimized.
In Section 4 we present the experimental setup for evaluating the
variability of interpretations given by a number of human subjects
and compare it with the variability of the interpretation provided by
the SNEF algorithm.

2. A REVIEW OF THE SNEF ALGORITHM

The paper [5] presented an efficient ellipse fitting based algorithm
for cell nuclei segmentation from histological H&E stained images.
The idea of the algorithm is to estimate the image gradients and
to group the connected pixels having high gradient values into a
presumptive part of a nuclei contour, to which one ellipse is fitted.
The possible discontinuity points between two intersecting ellipses,
or alternatively, the groups of contiguous pixels of one ellipse are
found by rotating a ray centered at a seed point and picking at each
angle a pixel from the high gradient pixels. The obtained pixels
are then grouped into connected components, which are grouped
in various combinations to be evaluated latter. The process is re-
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peated with various grouping of the pixels, resulting in a number of
possible ellipses. The algorithm decides based on a heuristic cri-
terion which ellipses to keep in the final interpretation. The initial
seeds are determined by a morphological operation and the algo-
rithm tolerates to have more seeds than the real number of nuclei.
The algorithm relied on a number of thresholds, like the initial one
used for finding the contour of the clump and the one imposed on
the gradient values for selecting potential pixels on the ellipses. The
algorithm was shown to provide plausible interpretations for clumps
of overlapping ellipses. In this paper we allow a number of four dis-
tinct choices for the initial thresholds in the algorithm, with two dif-
ferent thresholds for getting the contour and two different thresholds
on the gradient image. In this way we get a number of four com-
peting interpretations as the output of the SNEF algorithm, which
will be ranked by the MDL based criterion introduced in the next
section for principally selecting the best interpretation.

3. RANKING AMONG COMPETING INTERPRETATIONS
OF A CLUMP USING THE MDL PRINCIPLE

Minimum description length (MDL) [6] principle provides a prin-
cipled and systematic framework for comparison between different
statistical models (in our case, models for representing geometrical
structures). MDL provides a natural trade-off between the complex-
ity of the model and the accuracy of fitting the data.

The MDL principle was previously used for image segmenta-
tion in [7], where gray-level images were segmented by minimiz-
ing a MDL score of a two-dimensional polynomial model defined
on each region, using an optimization technique from the group of
continuation methods; the model was refined to include a more pre-
cise cost for contours in [8] where MDL costs were used for making
decisions during the process of region merging, by which the final
segmentation was achieved; finally in [9] a similar technique to [8]
is used, operated at a number of different scales and initialized by a
mean shift segmentation algorithm.

Differently than in the previously mentioned papers, our prob-
lem is not one of segmentation, but one of proposing an interpre-
tation of a region by possibly overlapping ellipses. Therefore our
contour costs will have a different form. We present a fully im-
plementable coding algorithm, which provides the codelengths for
MDL criterion, as opposed to the papers [7, 8, 9], which use asymp-
totic expressions of the parameter costs.

The basic idea in [7, 8, 9] and in here is to account for the cost
of losslessly describing an image by using the intermediate stage
of encoding the segmentation and then encoding the image making
use of the already described segmentation. If the segmentation de-
scribes accurately the regions of the image, the overall cost will be
better than if the segmentation does not describe well the image re-
gions. Using similar notations to [8, 9], we define Ω to be the set
of contour pixels, which describe the segmentation, β is the vector
of the parameters for the coding distributions. Then we can generi-
cally decompose the overall codelength L(Y,Ω,β ) in the following
terms:

L(Y,Ω,β ) = L(Ω)+L(β |Ω)+L(Y |Ω,β ), (1)

where L(Ω) is the cost for describing the contour pixels, L(β |Ω) is
the cost of describing the coding parameters in each of the regions,
and L(Y |Ω,β ) is the codelength for encoding the image given the
split in regions and using the coding distributions.

3.1 An implementable description of the image

The description of the image is done in a perfectly lossless way by
specifying the following: the parameters of the ellipses, the pro-
cedure for constructing the contour of the nuclei cluster given the
ellipses, the parametric description of the interior and of the exte-
rior of the nuclei cluster and finally the residuals for all pixels in
the image. Our hypothesis is that each ellipse represents a nucleus,
which may partially occlude (or overlap with) other nuclei.

Codelength L(Ω) for representing the ellipses
We define Ω as the contour pixels, forming the outer boundary

of the union of the nE ellipses used in a given interpretation. This

set can be obtained by describing the nE ellipses and then form-
ing their union and taking the boundary set of it. Each ellipse is
represented and encoded by using the parametrization having the
parameter vector α = [x0 y0 a b θ ], where (x0,y0) are the coordi-
nates of the center of ellipse, a is the major axis, b is the minor
axis, and θ is the angle between the x axis and the major axis of
the ellipse. For an image with nr rows and nc columns, the pos-
sible range of the parameters is from 0 to the following maximum

values: αMax,1 = nr, αMax,2 = nc, αMax,3 = αMax,4 =
√

n2
c +n2

r ,
αMax,5 = π . Encoding of the parameter αi is realized by uniformly

quantizing its value by using 2b reconstruction levels in the range
(0,αMax,i), with a cost of b bits per parameter. The resolution in the

parameter space is ∆αi
= αMax,i/2b. Experimentally we found that

b = 7 is providing the best overall codelength. Thus each ellipse re-
quires 5b = 35 bits for encoding its parameters and we need a total
codelength L(Ω) = 5bnE for all nE ellipses needed to represent Ω.

Codelength L(β |Ω) for representing the parameters of cod-
ing distributions

For the description of the foreground and background of the
image one can use polynomial functions as in [7, 8, 9]. However, we
observed that a constant model for the foreground (with a constant
µF ) and a constant model for the background (with a constant µB)
are providing good segmentations. Since the significance of the
constant level is that of a gray level in the luminance image, we
require 8 bits for each of the two constant levels µF and µB. The
residual image is encoded using Golomb-Rice codes for a doubly
exponential distribution, which is known to be very efficient way for
lossless encoding of images [10]. We will use two different coding
distributions, one for the foreground and one for the background,
requiring to specify two Golomb-Rice coding parameters, ℓF and
ℓB, each of 8 bits, thus in total L(β |Ω) = 32 bits.

Codelength L(Y |Ω,β ) for representing the image given the
ellipses and coding parameters

Our algorithm operates in the luminance domain of the origi-
nal H&E image (as most steps of SNEF algorithm operate also on
the luminance component). We arrange columnwise the luminance
values Y (i, j) falling inside the contour Ω in a long vector {zk,k =
1, . . . ,nF} and define the residuals as εi = zi − ẑi, where ẑi = µF .

Assuming a two sided exponential distribution P(ε) = Cλ e−|ε|/λ

for the residuals εi, the best codes are obtained by applying first a
mapping of signed errors to unsigned errors by

γi =

{

2εi i f εi ≥ 0
2|εi|−1 i f εi < 0

. (2)

The Golomb-Rice code of parameter kF = 2ℓF will encode unary

the value ⌊ γi

2ℓF
⌋ and then will transmit the reminder γi − 2ℓF ⌊ γi

2ℓF
⌋

using ℓF bits, requiring in total ⌊ γi

2ℓF
⌋+ ℓF +1 bits. Thus to encode

the residuals of the foreground we need

LF = nF (ℓF +1)+
nF

∑
i=1

⌊ γi

2ℓF

⌋

. (3)

In an identical manner we can derive the codelength LB for repre-
senting the residuals from the background. Thus the overall code-
length for both foreground and background pixels is L(Y |Ω,β ) =
LF +LB.

3.2 Optimization of MDL criterion

The discrete nature of the parameter space used in our imple-
mentable coding scheme suggests a direct optimization of the MDL
cost by a relaxation method, where at each iteration one ellipse is
selected to be changed, while all others are kept fixed. Changing the
parameters of the selected ellipse Ei is done by letting its vector of
parameters to run through the set of vectors obtained by the Carte-

sian product
⊗5

i=1{(αi − λ∆αi
),αi,(αi + λ∆αi

)} and thus at one
iteration of the relaxation process we evaluate L(Y,Ω,β ) a number
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MDL0 = 42994 MDLF = 41836 MDL0 = 43148 MDLF = 41681 MDL0 = 42104 MDLF = 41733

(a) (b) K = 4 (c) K = 5 (d) K = 5

Figure 1: Initial ellipses (in red) and their corresponding criteria, MDL0, and final ellipses (in green), after the iterative local optimization
and their corresponding criteria, MDLF . (a) Original RGB image; (b) Interpretation C1 of one subject; (c) Interpretation C2 of the same
subject; (d) SNEF interpretation. Lowest MDL is obtained for the interpretation with K = 5 ellipses given by the human subject, closely
followed by the interpretation of SNEF, also for K = 5 ellipses.

of 35 times and keep in the end the parameters of Ei that provided
the lowest codelength. The evaluation process can be organized in
an efficient manner, since a lot of computations can be easily up-
dated for the next evaluation.

One relaxation cycle ends after we went and changed all the nE

ellipses. In the experiments reported here we had a number of 5
relaxation cycles, where the parameters λ were taken in turn from
the list [1,2,1,2,1].

4. EXPERIMENTAL RESULTS

We selected from a set of histological images a number of nI = 24
clumps. We collected interpretations from nS = 5 subjects, who
were instructed to do the following: use an interactive graphical
routine to mark on the image the contour of all shapes that are re-
sembling (even slightly) an elongated shape not touching the bor-
der of the image (our clumps were all selected for simplicity to be
fully included in the analysis window). The best fitting ellipse to
each contour was then computed by a constrained least square fit-
ting and presented to the subject overlapped on the original image;
the interactive graphical routine also allowed the subject to adjust
the shape of each ellipse to reach the best fit, judged subjectively.
The ellipses were labeled on the screen and the subjects continued
by delivering a number of likely explanations of the image Ii, e.g. a
subject Sk can provide nC(k) = 2 configurations: C1 = {E1,E2,E3}
and C2 = {E1,E2}. A degree of belief p̂(Ii,Sk,Cℓ) in the configura-
tion explanations was also input from each subject Sk.

In Figure 1 we show the type of inference, which is allowed
by using the MDL structure selection: in Figures 1 (b)-(d) we have
three interpretations of the clump from Figure 1 a), two provided
by a human subject and one provided by the SNEF algorithm. The
initial ellipses are shown in red and the corresponding MDL val-
ues are 42994, 43148 and 42104, with the lowest initial MDL pro-
vided by SNEF algorithm, for an interpretation with 5 ellipses. It
is interesting that the MDL0 values for (b) and (c) favor K = 4 el-
lipses. However, after running our locally optimization algorithm
we get a consistent result, both interpretations with K = 5 achieve
the lowest value of MDLF . The percentage of MDL reduction
is 100(MDL0 −MDLF )/MDL0 and the corresponding values are
2.69%, 3.40%, and 0.88%.

Next we illustrate in detail the type of variability of resulting
segmentations, when starting from different human subjective eval-
uations of ellipse interpretations, and when using the ellipse fitting
algorithm. We have run the algorithm SNEF four times, with two
different thresholds for getting the contour and two different thresh-
olds on the gradient image. For finding the threshold values for the
luminance image we used dual thresholding [11] and Otsu thresh-

olding [12]. Otsu thresholding minimizes the inter class variance,
while dual thresholding is developed for histological images con-
sisting of nuclei, cytoplasm, and background region. For the gradi-
ent image we use two thresholds: once Otsu threshold and second
time we completely ignored the gradient image. This led to final
segmentations involving different number of ellipses. We show in
Figure 2 the results obtained for the 4 clump images from column
(a) of Figure 2. The optimal contours of the clumps obtained by
optimal Otsu threshold and by dual thresholding are presented in
the column (b) of Figure 2. In column (c) of Figure 2 we show the
best results (in terms of MDL) of the SNEF algorithm, for the ini-
tial configuration and also after locally adjusting the parameters of
the ellipses by using the proposed iterative algorithm. Finally, in
column (d) of Figure 2 we show all ellipses traced by the human
subjects. We note that the clumps in rows 2 and 4 presented are sit-
uations more difficult to interpret. The difficulty of the task comes
from a number of competing interpretations of some areas of the
clumps: elongated shapes that can be split in two or not; light con-
trast shapes, which one may even consider to be only an artifact due
to noise; very poor contours, due to fading of the intensity. Over-
all SNEF provided plausible interpretations, comparable to those of
the human subjects.

This process has created a number of multiple interpretations
for each of the 24 images. We define for the time being the ”ground
truth” of a given feature in one given image as the average of that
given quantity over all interpretations provided by subjects (not in-
cluding the SNEF algorithm) for that image. For example we can in-
troduce the average nE(Ii) of the number of ellipses found for image

Ii as nE(Ii) =
1
nS

∑
nS

k=1 ∑
nC(k)
ℓ=1 p̂(Ii,Sk,Cℓ)nE(Ii,Sk,Cℓ) and similarly

define the variance of the number of ellipses nE as σ2(nE(Ii)) =
1
nS

∑k ∑ℓ p̂(Ii,Sk,Cℓ)(nE(Ii,Sk,Cℓ)−nE(Ii))
2. We define in this way

averages and variances over each image for the following quan-
tities: initial MDL0 value of subject’s configurations, final MDL
value, MDLF , after adjusting each configuration towards a lower
MDL. Then we evaluate similarly deviations of the results obtained
by SNEF algorithm against ”the ground truth”, e.g., ∆(nE(Ii)) =
|nE(Ii,SNEF)− nE(Ii)|. We present in Figure 3 (a) the standard
deviations σ(nE(Ii)), for each image Ii and the values ∆(nE(Ii)).
Similarly the Figures 3 (b) and 3 (c) show the variability observed
in the initial values MDL0 and in the final values MDLF .

In Table 1 we present also another view at the variability in the
decisions regarding the number of ellipses. For each image we can
express the degree of belief of all nS subjects on a given number

n of ellipses by P(n, Ii) =
1
nS

∑k ∑ℓ|nE (Ii,Sk,Cℓ)=n P(Ii,Sk,Cℓ). We re-

define for each image the ground truth as the maximum likelihood
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(a) (b) (c) (d)

Figure 2: (a) Original RGB images. (b) Boundaries obtained by Otsu thresholding (cyan) and dual thresholding (yellow) superposed over
the original image. (c) Best SNEF results: initial configuration (red) and after iterative improvement of MDL (green). (d) All ellipses traced
by the 5 human subjects.
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Figure 3: Variability of estimated number of ellipses and of MDL
before and after the iterative algorithm.

∆nE −2 −1 0 1 2

P̂(∆nE) 0.0108 0.0625 0.7670 0.1206 0.0307

P̂SNEF (∆nE) 0 0.1667 0.7083 0.1250 0

Table 1: Probabilities of making ∆nE mistakes in the number of

ellipses, by the human subjects (P̂(∆nE)) and by SNEF algorithm

(P̂SNEF (∆nE)).

of the values nE proposed by each subject, by finding the value
n̂E(Ii), which maximizes P(n, Ii). We define the probabilities of the

errors over all images as P̂(∆nE) =
1
nI

∑i P(n̂E(Ii) +∆nE , Ii). We

also define a similar quantity for the nE,SNEF (Ii) values provided by

the SNEF algorithm, P̂SNEF (∆nE) =
1
nI

∑i P(nE,SNEF (Ii) = ∆nE +

n̂E(Ii)).

5. DISCUSSIONS AND CONCLUSIONS

Before seeing the MDL results and the segmentations of Figure 1,
the pathology expert decided that the interpretation with K = 5 is
the best interpretation, in conclusion MDL evaluation for Figure 1
provides very good results, in agreement with the pathology expert.

From Table 1 we can note that the probability of finding the
right number of ellipses is a little higher for human subjects than
for SNEF algorithm, while the probabilities of mistakes spread over
a higher number of mistake numbers for human than for SNEF al-
gorithm.

From Figure 3 we see that the variability of the MDL criterion
over the provided human interpretations is much higher than that
of the final values MDLF , obtained with our iterative algorithm.
Also we note that the deviations ∆MDLF

from the ground truth of
the SNEF algorithm are in general lower than two times the standard
deviation of the human subjects obtained MDL.
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