
  Figure 1. FP vs FN gait - physical dimensions for video capture
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ABSTRACT

Human gait is a useful biometric which has been used in
many fields such as human identification, motion synthesis
and clinical diagnosis. The derivation of features used to
describe  gait depends very much on the temporal nature of
the movement signal. We focus on the fronto-normal view of
gait which provides more dynamic information. Newer
features based on nonlinear analyses require the establishment
of nonlinear behaviour. The level of determinism of a signal
also indicates what kind of auxiliary analyses may be needed.
The confounding of deterministic and nonlinear properties
motivates us to perform an original analysis on gait data using
the recently introduced method of Delay Vector Variance.
This method shows promise as it will easily indicate the level
of deterministic and nonlinear behaviour of a signal
separately.  We look into and compare various approaches of
doing this on human gait derived from video signal.

1.     INTRODUCTION

There are many applications of human gait as a measure of a
person’s characteristics. It can be used as a biometric, to help
identify a person in a security application. Also, it is used in
motion capture, to synthesize animation and physiologically,
to assess a person’s psychomotor functions. However, human
gait captured from video is mainly used in security
applications because there is no need for high precision
analysis of motion. Today’s heightened security atmosphere
has made video capture devices affordable and versatile.
Also, consumer demand for higher quality image capture and
display facilities has fuelled the increase in resolution of these
cameras. So the amount of multimedia data available can
increasingly be used to derive new signal features for
automatic identification of people, motion capture and
assessment of medical conditions. Collecting video data is
especially useful as it does not require the cooperation of the
subject and is therefore non-intrusive and non-invasive. It can
also be used at a distance, and with the use of optical or
digital zoom and therefore is able to observe the subject for a
longer period without going out of the field of view.

Current video gait analyses do so mainly in an image
plane parallel to a camera, the so-called fronto-parallel (FP)
view. This gives the largest variation in silhouette from which
the time series data is obtained for analysis. Motion from a
plane perpendicular to this, the fronto-normal view (FN), is
considered as a special case. But very commonly, people are
made to queue up to access a facility. Also, the video capture
system is in an enclosed space. Most analyses of a FP walk
need at least two cycles or four steps. For more robust
estimation of the period of walking, twice that distance is
needed. This translates to the need to adequately capture
enough walking cycles. For example, if a person were to walk

about 0.7 m per step, to capture a movement of 8 steps would
require a distance of about 5.6 m. However because of the
focal length of the camera, the camera distance required to
capture this movement is about 8.5 m. Practically, it is
difficult to have such a wide uncluttered space, when we
desire to measure a person’s gait as many people and objects
will be present.

In a FN walk, we can still use the 8.5 meters, but this
time, twelve steps are covered and we only need a corridor-
like structure, the width being about that of a human body. A
considerable amount of space is saved. This is illustrated in 
Fig. 1.

In order to derive useful features, the fundamental temporal
nature of the signal has to be ascertained which are its
stationarity and linearity. The stationarity of a signal can be 
decomposed into its deterministic part that can be expressed
by equations and its stochastic or random part, as described 
by Wold’s [1] theorem. These will lead to the appropriate type
of signal processing as shown in Fig. 2. This is a sketch
showing the areas of knowledge in signal processing, for
signal types ranging from nonlinear to stochastic ones. This
figure is inspired by similar ones in [2] and [3] where areas of
available knowledge and technology for the analysis of time
series are outlined. Besides analysing (possibly noisy)
periodic signals, there are also the deterministic chaotic parts.
Linear stochastic areas are marked by ARMA analyses and its
nonlinear (NARMA) variants. Various types of hidden
Markov models (HMM) represent areas of research with
varying degrees of nonlinearity and stochasticity.

For all the ways to analyse data linearly, there are much
more ways to do so nonlinearly as described by Tong [4],
which gives rise to a rich source of features. Nonperiodic
analyses are capable of giving new insights into temporal data
and this is the motivation for the search for nonlinear features
in FP gait. In summary, the advantages of the monocular FN
non-silhouette approach are:

i)  Smaller physical space needed,
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Figure 3. Marker positions - left : FN view and
right : FP view

Figure 2. Analytical systems covering the range of 
nonlinear and stochastic properties of a signal.

ii) Ease of combining other biometrics,
iii) Non-periodic motion analysis

In the search for features in a time series or signal,
nonlinearity has often been confounded with determinism.
The Delay Vector Variance (DVV) method was devised to
address this problem by providing a simple, graphical way to
highlight the level of determinism and nonlinearity of a
signal. In Section 2 we discuss prior work related to nonlinear
FN gait analyses and the use of DVV. Section 3 describes our
experimental setup. The theory behind various nonlinear
analyses is covered in Section 4. Then the results of our
experiments will be covered in Section 5 before concluding
in Section 6.

2.     ANALYTICAL  REVIEW  OF  PRIOR  WORK

In this section, we present some prior analyses of FN gait and
the use of the DVV method which makes use of phase space
analysis and delay vector embedding with surrogate data for
verification purposes.

2.1      Use of nonlinear analyses for gait

Most analyses of human gait from video signals consider
motion of a silhouette from the FP view. These assume the
linear nature of the signal and use standard methods like
Fourier Transforms to process it. A thorough review has been
done by Nixon et al. [5]. The use of nonlinear analyses is
fairly new and for example, Lee et al. [9] have shown that the
FP view of gait is particularly amenable to linear analysis in
contrast to FN gait. Here they show the stationary nature of
FN gait signals and thereby use features derived from
deterministic chaos to help identify a person.

2.2      Phase space characterization of time series

In using phase space methods to test for nonlinear behaviour,
a scalar time series is subjected to dynamical analysis which
assumes that the time series data X is generated by a vector
valued process. The actual state vectors describing this
process may never be known but we can create a set of phase
space vectors which are topographically equivalent, and can
be considered to be a reconstruction of them. Takens "method
of delays" [6] is an established method for obtaining these
vectors. The reconstructed trajectory of X is described in a
matrix X made up of several phase space vectors as follows:

1 2 mX = [x  x ... x ]T

iwhere x  is the state of the system at sample i. Each row of X
is a phase-space vector with a length of the embedding

idimension m . That is, for each x ,

i i-mô  i-(m-1)ô i-ôx  = [x  x  ... x ]

1 2where ô is the time lag. This is for a time series x = {x , x ,...,

Nx } with N points. So X is a M  by m  matrix, and the number
of phase space vectors M  is equal to N ! (m  ! 1)ô. In keeping
with the topic, we will now refer to these phase space vectors
as Delay Vectors (DV). Every DV has a corresponding target
which is defined as the next element in the time series which

iis the scalar x . Thus targets can be considered to be the
predicted values of their respective DVs. The spread of the
values of the targets in DV space provides a measurement of
the local predictability of the time series.

The DVV methodology builds on earlier efforts to
characterize a signal’s level of determinism and nonlinearity
as described in [3]. In much of the literature using DVV, a
variety of methods have been described to determine m, but
the parameter ô is left at 1 citing simplicity without
justification, for example in [3] and [12]. For an infinite
amount of noise free data, this parameter is arbitrary but for
real world data, too small a value of ô will result in the DVs
being highly correlated or in other words, deterministic. The
parameter m is needed to capture the dynamics of the system.

In an earlier work, Lee et al. [7] have determined the
values of m  and ô for an optimal vector embedding. They have
also determined that FN gait has a stationary [8] and nonlinear
[9] temporal character. The results are reproduced in this
paper for the sake of completeness and comparison.

2.3      Surrogate data

When testing for the temporal nature of real life data,
statistical tests often are employed. It may not be possible to 
generate all the data needed to test and verify a hypothesis
about the data. However, test data in the form of surrogates
can be generated as a statistical resampling bootstrap
procedure on existing data. Described originally by Theiler et
al. [10], the literature contains various improvements to the
algorithm. We use the version provided in [3] for comparison.
Importantly,  surrogate data can be considered to be produced
by a linear process so any nonlinearity in the data is inherent
to it. Test statistics on the original and surrogate data can be
used to determine the validity of the hypothesis about the data.

3.     EXPERIMENTAL  SETUP  &   INITIAL  RESULTS

In FN gait recognition, we use feature points that have more
motion in the image plane. This would be the hands, feet and
knees, for a FP walk. For a FN walk this is also true, although
the motions are smaller in magnitude. For the two kinds of
walk, the coloured marker set up is shown in Fig. 3. The
marker designations are: lh/rh - left/right hand, lf/rf - left/right
foot, and lk/rk - left/right knee. Two additional discs of the
same colour are attached to the waist and neck are used for
distance normalization, due to the looming effect of a FN
walk. They are: tm/bm , the top/bottom markers. So for the FN
walk we have 6 data markers for each subject giving 12 time
series, for the x and y motion. Two additional FP walks
involving 3 markers were recorded for comparison purposes.
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Figure 4. Plots of normalized FP walk 

Figure 6.  Autocorrelation plots - left marker trajectories  - FP
Left to Right

Figure 7. Autocorrelation plots - FN walk

The markers are tracked using the CAMSHIFT [11]
algorithm. We take video clips of twelve subjects and a
further three for testing. The capture rate was 25 frames/s at
720 by 480 resolution, resulting in time series ranging from
90 to 150 samples. The normalized plots for FP and FN walks
are  shown in Fig. 4 and Fig. 5 respectively. Note that the
large amplitude periodic waveforms are those for the x-axis
movements which correspond to our natural limb swings.

Next, the autocorrelation plot for the FP walk in Fig. 6 shows
the strong periodicity in movement, especially in the x-axis
which swamps out the “non-periodic” signal in the y-axis. In 
our earlier work [9], we have shown that these x-axis
movements are in fact linear in nature. 

In contrast, the autocorrelation plot for FN gait in Fig. 8  does
not show any periodicity in any of the twelve marker

trajectories. This is an indicator of nonlinear dynamics or
chaotic behaviour.

4.     THEORY OF NONLINEAR ANALYSIS

In this section, we attempt to extend and apply one of the
recent methods in the assessment of nonlinearity and
determinism in time series, namely the DVV method.

4.1      Delay Vector Variance

The idea behind DVV lies in measuring the local
predictability of a time series. For a given DV x, a set of DVs
that are geometrically (in a Euclidean sense) near to it are
found. Assuming that the vector space described by the DVs
is continuous, the targets of the nearby DVs should, in the
same way, be geometrically near to each other as well as they
are just one time lag away. The presence of noise affects this
and thus provides a measure of determinism.

As for nonlinearity, the DVV method relies heavily on the
use of surrogate data for detection of the same. As mentioned
earlier, surrogate data is formed by a linear process on the
time series. If the data is linear, then properly chosen
operations on the surrogate data will produce results similar
to the original data. The measurement of the local
predictability is one such operation and the deviation of
results from the original against the surrogate data provides a
measure of nonlinearity. More precisely:

d di)  The mean ì , standard deviation ó , are computed of the

i jEuclidean distances between all pairs of DVs  ||x  ! x || (i� j).

ii) To compute the local linear distances, a range of inter-

d dvector distances r  are generated in the interval [max{0, ì  &

d d d d d dn ó  }; ì  + n ó  ]. In this interval, the values of r  are

tv dspecified for N  uniformly spaced points, where n  is the span
over which computations are performed. Now for every DV

k ix , a restricted list of every other DV x  which is

d k dgeometrically closer to it, for every value of r is kept in Ù (r )
so that:

k d i k i dÙ (r ) = {x  | || x  & x  || < r  }

k d For the list of DVs in every Ù (r ) the variance of the targets

k d k d ó (r ) is calculated. The average over all Ù (r ) normalized2 

xby the variance of the time series ó  with N samples gives a2

measure of the unpredictability as the ‘target variance’:

  Figure 5.  Plots of normalized  FN walk 
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Figure 8. False Nearest Neighbour plots for the markers of
one person in a FN walk

Figure 9. Mutual Information plots: markers of a person in FN walk

Figure 10. Typical  DVV plot and scatter diagram:  ô=1

d d d dBy plotting ó* (r ) against (r & ì ) / ó , the presence of2 

ddeterminism shows as small values of  ó* (r ) for small spans2 

m in dand the minimum value ó * (r ) is a measure of2 

stochasticity of the time series. However Gautama et al. [12]

m in dnoted that the relative values of ó * (r ) should be used for2

the measure of determinism when the length of the time series
N < 1000.

By doing the same computation for the surrogates, their

dtarget variances should be the same for various values of r  if

dthe data are linear. By plotting the average values of ó* (r )2 

for the surrogates against the original values will show the
degree of nonlinearity. A scatterplot of these DVV values will
show this, an example being the lower part of Fig. 10. 

5.     RESULTS OF NONLINEAR ANALYSES

Since the determination of the embedding parameters is
important, we show the results first.

5.1      Embedding parameters

There are several methods to select suitable parameters m  and
ô. For the latter, a standard way is to take the instance when
the autocorrelation plot first reaches zero. But we see that it
never reaches zero until the end of the walk. An alternative is
the time delayed mutual information measure as proposed by
Fraser and Swinney [13]. A sample plot is shown in Fig. 9 for
one person. The point at which the first minimum of the plot
is taken to be the best value for ô which is 2 in this case, for
all twelve marker trajectories. 

For m , we use the method of false nearest neighbours
(FNN) as proposed by Kennel et al. [14] and shown in Fig.8,
11. Taking the average of all the largest values where the
FNN goes to zero, we find the nearest integer value to be six. 

5.2      Delay Vector Variance Analyses

d tvTo start with, we use the values n  = 4, N  = 20 and 25
surrogates, as these give a good balance between efficiency 
and undue strange results. The parameter ô is set to 1 as in
many of the other DVV analyses discussed in Section 2. The
results for the marker movements are similar, so we show just
one result in Fig. 10.  Here, the DVV plot on the left shows a
low variance for small standardized distances indicating high
determinism: that is, the local predictability is high. On the

dright, the scatter plot is generated by using the values of  r  as

da parameter and the values of the target variances ó (r ) for2 

the original data versus that of the average of the surrogates
are plotted. Since there is good agreement between these sets
of data, they lie on the dashed line denoting equality of values
on the axes, which shows linearity in the data.

Now when we set m  = 6 as the optimal value for the delay as
described in Section 5.1, the results are markedly different. 

This is shown in the FP plot which has linear data in Fig. 12.
What is surprising is that the movements of the rhx, rfx and
rkx markers which have been shown to be linear, do not
demonstrate this as seen in the DVV scatter diagrams.
However, the minimum of the DVV plots show values below
1, indicating a low level of stochasticity.

In contrast,  we show a plot of a FN walk in Fig. 11 where all
the marker data have been shown to be nonlinear in nature,
but stationary. The marker movements in the x-axis
demonstrates low values, showing some determinism, the
smallest values all being smaller than 1. However, the y-axis
values do not seem to show this.

6.     CONCLUSIONS

We have performed a novel analysis on FP and FN gait using
the DVV method. We have seen some degree of determinism
in both sets of gait signals. In earlier work, we established the
stationarity of FN gait signals. In establishing the
deterministic nature of these signals, we reinforce their
properties of stationarity. Thus we have added support for our
earlier work where we sought for justification for chaotic
analysis of data.

Assessment for nonlinearity however requires a larger set
of samples and better choice of parameters to fit the analysed
data. This forms the basis for future research which can use
nonlinear features to characterise such gait, being applied to
medical diagnosis and assessment, biometrics to name a few.
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Figure 11.  DVV and scatter plot for 12 markers of a FN walk

Figure 12. DVV and scatter plots for FP walk where the x-axes
data are linear for ô = 6
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