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ABSTRACT

We consider a two-user multiple-input single-output inter-
ference channel in which the receivers treat interference as
additive noise. The transmitters are assumed to have imper-
fect channel state information to the receivers. The trans-
mitters choose their beamforming vectors considering worst
case power gains at the receivers. We provide a real-valued
parametrization of the beamforming vectors that achieve the
Pareto boundary of the rate region with channel uncertain-
ties. Simulation results and high SNR analysis show that the
gain in spectrum sharing under imperfect channel state in-
formation converges to the setting of time division multiple
access. Moreover, we provide analytical results for the max-
imum sum rate in asymptotic cases of low and high signal to
noise ratios.

1. INTRODUCTION

We consider two transmitter-receiver pairs sharing the same
spectral band. Each transmitter is equipped with multiple
antennas while each receiver uses a single antenna. This set-
ting corresponds to the multiple-input single-output (MISO)
interference channel (IFC) [1]. We assume that the receivers
treat the interference from unintended transmitters as addi-
tive Gaussian noise. The achievable rate region, of this set-
ting is in general not a convex set. The outermost boundary
of this region is called the Pareto boundary and consists of
Pareto optimal points. At these points, it is impossible to in-
crease the rate of one user without reducing the rate of the
other.

In the case of perfect channel state information (CSI), the
beamforming vectors that are relevant for Pareto optimal op-
eration are proven in [2] to be a linear combination of maxi-
mum ratio transmission (MRT) and zero forcing transmission
(ZF). For the general K-user case, real-valued parametriza-
tion of the efficient beamforming vectors is provided recently
in [3, 4]. In [5], Pareto optimal beamforming for partial CSI
at the transmitters is considered in the two-user MISO IFC.

The parametrization of the Pareto optimal beamforming
vectors requires that the transmitters know the channels to
all receivers. We consider the case where the transmitters
have imperfect CSI and the uncertainty of the channel in-
formation is bounded by a spherical region. In [6], channel
mismatches are modeled by spherical uncertainty, while in
[7] by ellipsoidal uncertainty. The latter work encompasses
the spherical uncertainty model as a special case. Different
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robust adaptive beamforming techniques are found in [8] and
robust beamforming using convex optimization is discussed
in [9].

We investigate robust Pareto optimal transmission in
which the transmitters have imperfect CSI. We adopt the
spherical uncertainty model from [6]. Considering the worst
case achievable rate of the links, we characterize the beam-
forming vectors that achieve points on the Pareto boundary
of the robust rate region. In addition, we investigate the
gain in spectrum sharing under channel information uncer-
tainty compared to time division multiple access (TDMA).
The spectral efficiency gain with spectrum sharing is larger
in the mid signal to noise ratio (SNR) regime. We provide an-
alytical results for asymptotic cases on the SNR for optimal
sum rate transmission.

The paper is organized as follows. In Section 2, we de-
scribe the system model and channel uncertainty model. In
Section 3, we provide the parametrization of the beamform-
ing vectors that achieve the Pareto boundary of the Rate re-
gion with imperfect CSI. In Section 4, we study the optimal
transmission in the low and high signal to noise ratio regimes.
Section 6 gives conclusions and future work.

Notations

Column vectors and matrices are given in lowercase and up-
percase boldface letters, respectively. ‖a‖ is the Euclidean

norm of a,a ∈ CN . |b| is the absolute value of b,b ∈ C. (·)H

denotes the Hermitian transpose. span{a1, ...,aK} denotes
the space spanned by the vectors a1, ...,aK . The orthogonal
projector onto the column space of Z is ΠZ := Z(ZHZ)−1ZH .
The orthogonal projector onto the orthogonal complement of

the column space of Z is Π⊥
Z := I−ΠZ , where I is an identity

matrix. Throughout the paper, the subscripts k, ℓ are from the
set {1,2}.

2. PRELIMINARIES

2.1 System and Channel model

The quasi-static block flat-fading channel vector from trans-

mitter k to receiver ℓ is denoted by ĥkℓ ∈ CN . We assume
that transmission consists of scalar coding followed by beam-
forming. The beamforming vector used by transmitter k is
wk ∈ CN . The matched-filtered, symbol-sampled complex
baseband data received at receiver k is

yk = ĥ
H

kkwksk + ĥ
H

ℓkwℓsℓ+ nk, k 6= ℓ, (1)

where sk is the symbol transmitted by transmitter k. The ran-
dom variables nk are noise terms which are independent and
identically distributed (i.i.d.) complex Gaussian with zero
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mean and variance σ2. Each transmitter has a total power
constraint of P := 1 such that ‖wk‖

2 ≤ 1. Define the signal

to noise ratio (SNR) as ρ = 1/σ2.

2.2 Spherical Uncertainty model

We assume a transmitter k does not know the channels ĥkk

and ĥkℓ perfectly. In the spherical uncertainty model, the
channel estimation errors are defined as

δ kℓ = ĥkℓ− hkℓ, δ kℓ ∈ D(εkℓ), (2)

where hkℓ is the estimate of ĥkℓ and

D(ε) = {δ : ‖δ‖ ≤ εkk}. (3)

The worst case power gain at intended receiver k is the
squared of

xkk(wk) = min
δ kk∈D(εkk)

|wH
k ĥkk|. (4)

The error vector as a function of the used beamforming vec-
tor which realizes the worst case intended power gain in (4)
is determined in [6], and the worst case intended power gain
can be written as [6, 10].

xkk(wk)
2 =

(

(|wH
k hkk|−‖wk‖εkk)

+
)2
, (5)

where (x)+ := max(0,x). Define the worst case interference
gain as the squared of

xkℓ(wk) = max
δ kℓ∈D(εkℓ)

|wH
k ĥkℓ|. (6)

Similarly, the error vector as a function of the used beam-
forming vector which realizes the worst case interference
power gain can be calculated and the interference power gain
at receiver ℓ is

xkℓ(wk)
2 =

(

|wH
k hkℓ|+ ‖wk‖εkℓ

)2
. (7)

Thus, the worst case SINR at receiver k can be written as

φk(w1,w2) =

(

(|hH
kkwk|− εkk‖wk‖)

+
)2

(

|hH
ℓkwℓ|+ εℓk‖wℓ‖

)2
+σ2

, k 6= ℓ. (8)

2.3 Robust Rate Region

The achievable rate for link k is

rk(w1,w2) = log2(1+φk(w1,w2)), (9)

where single-user decoding is performed at the receiver. The
rate region is the set of all achievable rate tuples:

R :=
{

(r1(w1,w2),r2(w1,w2)) : ‖wk‖
2 ≤ 1

}

. (10)

Definition 1 An operating point (r1,r2) ∈ R is Pareto opti-
mal if there is no other operating point (r′1,r

′
2) ∈ R such that

(r′1,r
′
2)≥ (r1,r2), where the inequality is componentwise and

strict for at least one component. �

The set of all Pareto optimal operating points makes up the
Pareto boundary of the rate region. We are interested in op-
erating points which are on the Pareto boundary of the rate
region.

3. PARETO OPTIMAL BEAMFORMING

In this section, we will first review the results for Pareto
optimal beamforming for perfect CSI. Then we provide the
parametrization for the imperfect CSI case.

3.1 Perfect CSI case

For the two-user MISO IFC with perfect CSI at the transmit-
ters and receivers, the set of beamforming vectors for each
transmitter that are relevant for Pareto optimal operation are
parameterized by a single real-valued parameter λk ∈ [0,1] as
[2, Corollary 1]

wk(λk) =
√

λk

Π
ĥkℓ

ĥkk

‖Π
ĥkℓ

ĥkk‖
+
√

1−λk

Π⊥
ĥkℓ

ĥkk

‖Π⊥
ĥkℓ

ĥkk‖
, (11)

where k 6= ℓ. This parametrization is valuable for de-
signing efficient low complexity distributed resource al-
location schemes [11]. The set of beamforming vec-
tor in (11) includes maximum ratio transmission (MRT)

(λ MRT
k = ‖Π

ĥkℓ
ĥkk‖

2
/‖ĥkk‖

2
) and zero forcing transmission

(ZF) (λ ZF
k = 0). According to [2, Corollary 2], it suffices that

the parameters λk only be from the set [0,λ MRT
k ] for Pareto

optimal operation.

3.2 Imperfect CSI case

In case the channel knowledge at the transmitters is not per-
fect but lies within the uncertainty region, robust transmis-
sion can be modeled with worst case analysis. According to
the SINR expression in (8), worst case signal power and in-
terference powers include additive terms influenced only by
the norm of the beamforming vectors. It is thus expected
that robust Pareto optimal beamforming includes addition-
ally varying transmission power.

Proposition 1 The Pareto boundary of the rate region R in
(10) is achieved by the beamforming vectors

wk(pk,λk) = pk

√

λk

Πhkℓ
hkk

‖Πhkℓ
hkk‖

+ pk

√

1−λk

Π⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
,

(12)
where k 6= ℓ, pk ∈ [0,1], and λk ∈ [0,λ MRT

k ], with λ MRT
k =

‖Πhkℓ
hkk‖

2/‖hkk‖
2.

Proof: The proof is provided in Appendix 7.1. �

The result in Proposition 1 differs to the case with perfect
CSI in (11) in the additional parameter which controls the

power allocation. Otherwise, the estimated channels ĥkk and

ĥkℓ replace the true channels from (11).
The beamforming vectors corresponding to MRT and ZF

represent extreme strategies which have the objective of ei-
ther maximizing the power at the intended receiver or mini-
mizing the interference power gain. Robust MRT is the solu-
tion of the following problem

max.
‖wk‖≤1

|ĥ
H

kkwk|= |hH
kkwk|−‖wk‖εkk, (13)

which is wR-MRT
k = hkk/‖hkk‖. In other words, to maximize

the power gain at the intended receiver in the worst case
of spherical uncertainty, the transmitter chooses full power
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transmission in the direction of the estimated channel. Ro-
bust ZF transmission is achieved only by allocating zero
power. This is observed in the expression in (7) which can
only be zero for ‖wk‖= 0.

4. EFFICIENCY IN HIGH AND LOW SNR

4.1 Efficiency at High SNR

The quantitative performance is analyzed using the high-
SNR offset concept in [12, Section II]. Denote as C(ρ) the
sum rate as a function of the SNR. The high-SNR slope is

S∞ = lim
ρ→∞

C(ρ)

log2(ρ)
and (14)

which corresponds to the multiplexing gain, i.e. the slope of
the sum rate curve at high SNR. The maximum sum rate for
the case of perfect CSI is

Ĉ(ρ) =max
λ1,λ2

log2

(

1+
ρ |ĥ

H

11w1(λ1)|
2

1+ρ |ĥ
H

21w2(λ2)|2

)

+ log2

(

1+
ρ |ĥ

H

22w2(λ2)|
2

1+ρ |ĥ
H

12w1(λ1)|2

)

.

(15)

In the high SNR regime, the maximum sum rate is achieved
with ZF transmissions:

Ĉ(ρ) = log2

(

1+ρ |ĥ
H

11w1(λ
ZF
1 )|2

)

+ log2

(

1+ρ |ĥ
H

22w2(λ
ZF
2 )|2

)

,
(16)

which gives the maximum high-SNR slope of

Ŝ∞ = lim
ρ→∞

Ĉ(ρ)

log2(ρ)
= 2. (17)

The maximum sum rate for the case of imperfect CSI is

C(ρ) = max
p1,λ1,p2,λ2

log2

(

1+
ρ
(

(|hH
11w1(p1,λ1)|− ε11 p1)

+
)2

ρ
(

|hH
21w2(p2,λ2)|+ ε21 p2

)2
+ 1

)

+ log2

(

1+
ρ
(

(|hH
22w2(p2,λ2)|− ε22 p2)

+
)2

ρ
(

|hH
12w1(p1,λ1)|+ ε12 p1

)2
+ 1

)

,

(18)

where ε12 > 0,ε21 > 0 and 0 ≤ ε11 ≤ ‖h11‖ and 0 ≤ ε22 ≤
‖h22‖. In the high-SNR regime single-user transmission is
optimal achieving the largest high-SNR slope of S∞ = 1. The
maximum sum rate is

C(ρ) = log2

(

1+ρ max
k=1,2

(

(‖hkk‖
2 − εkk)

+
)

)

, (19)

where only one user operates using MRT and full power
transmission. Note that the condition that determines the
dominant user does not only depend on the channel gains but
also on the amount of uncertainty present at the transmitter.
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Figure 1: Comparison of rate regions for perfect CSI, imper-
fect CSI and TDMA with imperfect CSI. Two antennas are
used at the transmitters, with 5 dB SNR and εkk = εkℓ = 0.1

4.2 Efficiency at Low SNR

In [13], the low-SNR regime has been analyzed and two per-
formance measures namely the (Eb/N0)min and the wideband
slope S0 were introduced. The system parameters bandwidth
B, transmission rate R, transmit power P and spectral effi-

ciency C(Eb/N0) satisfy the fundamental limit R
B
≤ C

(

Eb

N0

)

.

The function C(Eb/N0) is directly related to the common ca-
pacity expression C(SNR), i.e. C(Eb/N0) =C(SNR) for the
SNR which solves (Eb/N0)C(SNR) = SNR. At low SNR,
the function C(Eb/N0) can be expressed as [13]

C

(

Eb

N0

)

≈
S0

3dB

((

Eb

N0

)

∣

∣

∣

dB
−

(

Eb

N0

)

min

∣

∣

∣

dB

)

, (20)

with (Eb/N0)min =
loge 2

Ċ(0)
and S0 =

2[Ċ(0)]
2

−C̈(0)
. The closer

(Eb/N0) gets to (Eb/N0)min the better is the approximation
in (20).

For the sum spectral efficiency for perfect CSI we obtain

(

Eb

N0

)pCSI

min

=
loge 2

|ĥ
H

11w1(λ1)|2 + |ĥ
H

22w2(λ2)|2
, (21)

where the minimum is achieved with
loge 2

‖ĥ11‖2+‖ĥ22‖2 corre-

sponding to MRT transmission. For the case of imperfect
CSI, we obtain

(

Eb

N0

)iCSI

min

=
loge 2

(‖ĥ11‖− ε11)2 +(‖ĥ22‖− ε22)2
, (22)

which clearly shows the loss due to channel uncertainty.

5. ILLUSTRATIONS

In Figure 1, three rate regions are plotted. The largest re-
gion corresponds to the case of perfect CSI where the Pareto
boundary is attained from (11). The second largest region
corresponds to the case of imperfect CSI. For this case, we
fix εkk = εkℓ = 0.1 and generate the beamforming vectors
characterized in Proposition 1. We choose for the parame-
ters pk 10 samples uniformly in [0,1]. For the parameters λk
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Figure 2: Comparison of maximum sum rates (ε = εkk = εkℓ).
Two antennas are used at the transmitters.

we chose 20 samples uniformly in the range [0,λ MRT
k ]. The

smallest region corresponds to TDMA with imperfect CSI.
The region is a triangle with two corners at the axes corre-
sponding to the single-user points.

In Figure 2, maximum sum rate is plotted for different
SNR levels. We compare the cases of perfect CSI, imperfect
CSI, and TDMA with imperfect CSI. We generate 1000 ran-
dom channel realizations and average over achievable sum
rates. For each channel realization, the maximum sum rate
point is found by a grid search over the rate samples corre-
sponding to the parameterized beamforming vectors. In the
case of perfect CSI, we used the parametrization in (11), and
for the imperfect CSI case we used the parametrization in
Proposition 1. For each parametrization, we generate 100
samples uniformly in the ranges of the parameters. The es-
timation error amplitude is equally chosen for all channels
such that ε = εkk = εkℓ. The plots are generated for two val-
ues of ε , 0.1 and 0.5. The sum rate in TDMA is determined
as the maximum of the single-user rates. The gain in spec-
trum sharing for the case of imperfect CSI to that of TDMA
is observed as the distance between the two curves. This
distance is highest in the mid SNR regime and increases for
smaller ε , i.e., less channel uncertainty. The performance of
spectrum sharing and TDMA is the same for low and high
SNRs. The high-SNR slope for the imperfect CSI is 1 and
for the perfect CSI case is 2 as calculated in Section 4. In
the high SNR regime, ZF transmission is optimal to achieve
maximum sum rate. In the low SNR regime, MRT is sum
rate optimal and all curves in Figure 2 overlap.

6. CONCLUSIONS

In this work, we studied robust Pareto optimal beamforming
in a two-user multiple-input single-output interference chan-
nel. It turns out that a similar beamforming parametrization
can be used as in the perfect CSI case. However, additional
power allocation is necessary. Since ZF beamforming is not
possible due to uncertainty, the achievable high SNR sum
rate converges to the TDMA case with slope one.

For future work, we plan to extend the setting to the K-
user scenario and include also ellipsoidal uncertainty regions.
Furthermore, an important question is related to strategic bar-
gaining in interference channels with imperfect channel state
information.

7. APPENDIX

7.1 Proof of Proposition 1

The proof follows the lines of proof of Proposition 1 and
Corollary 1 in [2]. First we prove that any Pareto optimal op-
erating point is achieved by beamforming vectors which lie
in the span of hkk and hkℓ. The proof is by contradiction. Let
{zk1, ...,zk(N−2)} be an orthonormal basis for the null space

of span{hkk,hkℓ}. Assume that the beamforming vector wk

is not in span{hkk,hkℓ} and achieves a Pareto optimal point.
The beamforming vector wk can be written as

wk = αkhkk +βkhkℓ+
N−2

∑
i=1

γizki (23)

where αk,βk, and γki are complex-valued and |γki|> 0 for at
least one i. Since the vectors hkk and hkℓ span the same space

as
Πhkℓ

hkk

‖Πhkℓ
hkk‖

and
Π⊥

hkℓ
hkk

‖Π⊥
hkℓ

hkk‖
we can rewrite (23) as

wk = αk

Πhkℓ
hkk

‖Πhkℓ
hkk‖

+βk

Π⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
+

N−2

∑
i=1

γizki (24)

The power of the beamforming vector is

‖wk‖
2 = |αk|

2 + |βk|
2 +

N−2

∑
i=1

|γi|
2 ≤ 1 (25)

because all the vectors are orthonormal. By definition of
Pareto optimality, it is not possible to find another beam-
forming vector than wk in (24) which increases the rate of
one link without reducing the rate of the other link. Consider
the SINR of link k, the intended power gain is

(

(

|hH
kkwk|− εkk‖wk‖

)+
)2

. (26)

For link ℓ,ℓ 6= k, the interference power gain is

(

|hH
kℓwk|+ εkℓ‖wk‖

)2
. (27)

If for any γki in (24) with |γki|
2 > 0 we can construct a beam-

forming vector w′
k such that ‖w′

k‖
2 = ‖wk‖

2 by modifying

wk in the following manner: the power |γki|
2 which is as-

signed in wk in the component zi is traded to the component
Π⊥

hkℓ
hkk

‖Π⊥
hkℓ

hkk‖
. Increasing |βk|

2 increases the intended power gain

in (26) without affecting the interference power gain at the
unintended receiver in (27). This is a contradiction to the as-
sumption that wk achieves a Pareto optimal point. Hence, the
Pareto optimal beamforming vectors should have the form

wk = αk

Πhkℓ
hkk

‖Πhkℓ
hkk‖

+βk

Π⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
(28)

with |αk|
2+ |βk|

2 ≤ 1. Next, we prove that the parameters αk

and βk have to be nonnegative real-valued. We can write the
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intended power gain of link k as

|hH
kkwk|− ε‖wk‖=

∣

∣

∣

∣

∣

αk

hH
kkΠhkℓ

hkk

‖Πhkℓ
hkk‖

+βk

hH
kkΠ⊥

hkℓ
hkk

‖Π⊥
hkℓ

hkk‖

∣

∣

∣

∣

∣

− ε‖wk‖

≤ |αk|
hH

kkΠhkℓ
hkk

‖Πhkℓ
hkk‖

+ |βk|
hH

kkΠ⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
− ε‖wk‖,

(29)

where we used the triangle inequality. The upper bound in
(29) is achieved for αk and βk having the same phase. Since
wk can be multiplied with any complex number without af-
fecting the power gains, we can choose αk and βk to be real-
valued. Thus, the condition for the parameters in (28) can be
written as α2

k +β 2
k ≤ 1.

Next, we show that the intended power gain xkk(wk) is a

concave function of λk and has its maximum at λk = λ MRT
k .

Also, we show that the interference power gain xkℓ is mono-
tonically increasing in λk. Hence, for Pareto optimal opera-
tion, λk need only be in the range [0,λ MRT

k ].
The square root of the intended signal power gain xkk,

given in (5), is

xkk(wk(λk)) = pk

√

λk

hH
kkΠhkℓ

hkk

‖Πhkℓ
hkk‖

+ pk

√

1−λk

hH
kkΠ⊥

hkℓ
hkk

‖Π⊥
hkℓ

hkk‖
− p2

kεkk.

(30)

The first derivative of xkk(wk(λk)) w.r.t. λk is calculated as

∂xkk(wk(λk))

∂λk

=
pk

2
√

λk

hH
kkΠhkℓ

hkk

‖Πhkℓ
hkk‖

−
pk

2
√

1−λk

hH
kkΠ⊥

hkℓ
hkk

‖Π⊥
hkℓ

hkk‖

=
pk

2

(

‖Πhkℓ
hkk‖

√

λk

−
‖Π⊥

hkℓ
hkk‖

√

1−λk

)

(31)

The second derivative of xkk(wk(λk)) w.r.t. λk is

∂ 2xkk(wk(λk))

∂λ 2
k

=−
pk

4

(

‖Πhkℓ
hkk‖

√

(λk)3
+

‖Π⊥
hkℓ

hkk‖
√

(1−λk)3

)

(32)

which is strictly less than zero for pk > 0. Hence, xkk(wk(λk))
is strictly concave in λk. To find λk which achieves the maxi-
mum of xkk(wk(λk)) we equate the first derivative to zero and
solve for λk:

pk

2

(

‖Πhkℓ
hkk‖

√

λk

−
‖Π⊥

hkℓ
hkk‖

√

1−λk

)

= 0 (33)

‖Πhkℓ
hkk‖

√

λk

=
‖Π⊥

hkℓ
hkk‖

√

1−λk

(34)

‖Πhkℓ
hkk‖

√

1−λk = ‖Π⊥
hkℓ

hkk‖
√

λk (35)

‖Πhkℓ
hkk‖

2 −λk‖Πhkℓ
hkk‖

2 = ‖Π⊥
hkℓ

hkk‖
2λk (36)

λk(‖Πhkℓ
hkk‖

2 + ‖Π⊥
hkℓ

hkk‖
2) = ‖Πhkℓ

hkk‖
2 (37)

λk = ‖Πhkℓ
hkk‖

2/‖hkk‖
2 (38)

since ‖Π⊥
hkℓ

hkk‖
2 = ‖hkk‖

2 −‖Πhkℓ
hkk‖

2.

The square root of the interference signal power gain xkℓ
given in (7) is

xkℓ(wk(λk)) = pk

√

λk

|hH
kℓΠhkℓ

hkk|

‖Πhkℓ
hkk‖

− p2
kεkℓ (39)

The first derivative of xkℓ(wk(λk)) w.r.t. λk is

∂xkℓ(wk(λk))

∂λk

=
pk

2
√

λk

|hH
kℓΠhkℓ

hkk|

‖Πhkℓ
hkk‖

(40)

which is strictly larger than zero for pk > 0. Thus,
xkℓ(wk(λk)) is monotonically increasing with λk.
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