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ABSTRACT

The problem of localizing reflective boundaries in an acoustic envi-
ronment from acoustic measurements is considered. Specifically,
localization of multiple two-dimensional (2-D) line reflectors is
achieved by estimation of the time of arrival (TOA) of reflected
signals by analysis of acoustic impulse responses (AIRs). The es-
timated TOAs are used in conjunction with the source and receiver
locations to find the loci of solutions whose common tangents cor-
respond to the location of a reflector. The solution to the common
tangent estimation is a nonlinear and non-convex problem that can
yield local sub-optimal solutions using existing approaches. We
therefore propose an analytic method, based on a closed-form es-
timator, that is guaranteed to converge to the global minimum in an
error-free scenario. We further improve the robustness of the ap-
proach when errors are introduced in the estimated TOAs by using
the Hough transform to find the optimal solution. The proposed
approach is evaluated through Monte Carlo runs, using simulated
rooms, that demonstrate the feasibility of the proposed approach.

1. INTRODUCTION

Acoustic scene reconstruction is a process that aims to establish an
understanding of the acoustic environment in which space-time pro-
cessing algorithms operate. Specifically the location of reflecting
boundaries and obstacles can be estimated from acoustic measure-
ments, allowing the geometry of the room to be reconstructed. In
recent years, interesting solutions have appeared that make use of
microphone arrays as acoustic cameras [1] aimed at reconstructing
location, principal dimensions and shape of obstacles in the envi-
ronment [2] and for scene reconstruction [3].

Recent interest has been shown in the localization of line reflec-
tors in the acoustic space by analysis of the times of arrival (TOAs)
of first-order reflections. Under the hypothesis of optical acoustics,
it is known that the total time of flight for a reflected path consists
of two components: the sum of the path from source to reflector
and reflector to microphone. It was shown in [4] that for a single
source-microphone pair, the estimate of the TOA of the reflected
signals results in a locus of solutions that lies on an ellipse, and that
by considering the multiple-input-single-output (MISO) case there
exists a common tangent that corresponds to the reflective boundary.
The problem was extended in [5] in the single-input-multiple-output
(SIMO) case.

However, the existing approaches concerned with estimating
the line reflector rely on solving a nonlinear and non-convex opti-
mization problem. It is known that such approaches can converge to
non-optimal solutions in certain practical environments. This paper
aims to address some of these problems by first deriving a closed-
form solution for the single-reflector case, which yields a more ro-
bust solution when compared to existing approaches. The algorithm
provides all local minimum solutions ranked in order of cost, and in
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an error-free scenario is guaranteed to find the global optimum so-
lution. In other words, in the case where TOAs are known exactly,
the global minimum of the closed-form estimator also corresponds
to the true reflector. However, in the cases where the TOAs contain
errors, the true reflector may not correspond to the global minimum
but to one of the set of local minima. For this reason we propose
a second-stage correction that estimates a collection of meaning-
ful coordinate points, that are geometrically related to the estimated
line reflector from the closed-form solution and the set of ellipses re-
lated to the TOAs. The points that exhibit greatest collinearity, and
therefore most likely to correspond to the true reflector, are found
by application of the Hough Transform. In addition to providing
greater robustness to error in the SIMO case, this approach can be
used in future multiple-input-multiple-output (MIMO) cases, with
minor additional computational overhead. This permits measure-
ments from multiple source positions to be considered sequentially
in order to achieve better localization results in adverse conditions
where errors are introduced in the TOAs, particularly when con-
sidering more complex room geometries. The proposed algorithm
is evaluated by Monte Carlo simulations of acoustic environments,
aimed at reconstructing the geometry of the acoustic enclosure.

The remainder of this paper is organized as follows. In Sec-
tion 2, we formulate the problem by deriving a cost function for the
common tangent. In Section 3, we propose a closed-form solution
and robustness enhancement by means of the Hough transform. Ex-
perimental validation with simulated Monte Carlo runs is presented
in Section 4 and finally Section 5 summarizes the paper and sug-
gests directions for future work.

2. PROBLEM FORMULATION
Assume that there are M microphones distributed arbitrarily in a 2-
D plane located at positions ri � [xi yi]T , i = 0, . . . ,M−1, with the
reference microphone (i = 0) placed at the origin of the coordinate
system, r0 = [0 0]T , and a source located at rs � [xs ys]T . The
difference in the distances of microphones i and j from the source
is the range difference, di, j, and is proportional to the TDOA of the
direct-path between the ith and jth microphone, ∆i, j . If the speed
of sound is η , then

di, j = η ·∆i, j. (1)

Each microphone receives the signal xi(t), i = 0, . . . ,M− 1 which
is the sum of the direct-path signal and scaled replicas of the source
signal. The delay of each replica is determined by the respective
positions of reflectors, source and receivers. The observed sig-
nals xi(t) are therefore given by the convolution of the source s(t)
with the corresponding acoustic room impulse responses hi(t), i =
0, . . . ,M−1,

xi(t) =
� ∞

0
hi(t �)s(t− t �)dt �+ni(t), i = 0, . . . ,M−1, (2)

where ni(t) is additive environmental noise. Accordingly, the AIRs
are given by

hi(t) =
Q

∑
q=0

Ai,qδ (t− τi,q), (3)
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where Q is the total number of reflections of all orders, Ai,q is an at-
tenuation term and τi,q is defined as the TOA associated with the ith
microphone and the qth reflection. Note that the TOA of the direct-
path is defined with respect to the null reflector, q = 0. However,
for the remainder of this paper, we will not consider all reflections
Q but only TOAs that are related to direct-paths and N first-order
reflections, equal to the number of actual reflectors present in the
acoustic environment. We can obtain estimates of the TOAs related
to the direct path and first-order reflections by analyzing hi(t). For
this we note that the first peak in hi(t) is related to the time of flight
of the direct-path from rs to ri given by τi,0. Any subsequent peak
in hi(t) is related to the composite time of flight of the sound due to
reflection. By defining rp,i as the reflection point on any reflector,
we obtain τi,k, k = 1, . . . ,N as the sum of the two times of flight from
rs to rp,i, and then from rp,i to ri for any N reflectors present in our
environment. Under the hypothesis of optical acoustics, the angle
of reflection and incidence are assumed equal such that the locus of
possible solutions for the reflector forms an ellipse. We therefore
establish the distance estimate Di from the ith microphone to the
source such that

D̂i =
�

x2
s + y2

s + d̂i,0. (4)

The aim is to then find the parameters of the ellipse given the foci
ri = [xi yi]T and rs = [xs ys]T and the major axis, which will be
defined in the following. In homogenous coordinates a conic in two
dimensions using the parameters {a,b,c,d,e, f} can be expressed
as [6]

C =
�
(x,y) ∈ R2|ax2 +2bxy+ cy2 +2dx+2ey+ f = 0

�
. (5)

By setting x = [x y 1]T and C =

�a b d
b c e
d e f

�
this can be written as

xT Cx = 0, (6)

which parameterises an ellipse after constraining

det(C) �= 0,

����
a b
b c

���� > 0, det(C)/(a+ c) < 0. (7)

From [5] we can define the ellipse associated with the ith micro-
phone (i ∈ {0, · · · ,M−1}), and the kth reflector (k ∈ {1, · · · ,N})

Ci,k = T−T
i R−T

i S−T
i,k CIS

−1
i,k R−1

i T−1
i , (8)

where we can define translation, rotation, scaling and unit circle
matrices such that

Ti =

�1 0 ∆xi
0 1 ∆yi
0 0 1

�
, Ri =

�cosφi −sinφi 0
sinφi cosφi 0

0 0 1

�
,

Si,k =




Qmaj

i,k 0 0
0 Qmin

i,k 0
0 0 1



 , CI =

�1 0 0
0 1 0
0 0 −1

�
.

The quantities ∆xi, ∆yi, φi, Qmaj
i,k and Qmin

i,k are defined as fol-
lows. The point at (∆xi,∆yi) can be seen as the geographic mid-
point between rs and ri and is defined by ∆xi � xs + Di cos(φi)

2 and

∆yi � ys + Di sin(φi)
2 , with φi � tan−1

�
ys−yi
xs−xi

�
. If we assume N re-

flectors in our environment, where the total number of reflectors is
known, then every channel estimate contains information about the
N TOAs due to the reflective sound path. The scaling of the semi-
major and semi-minor axes of each ellipse is then given by

Qmaj
i,k � η τi,k

2
; Qmin

i,k �

��
η τi,k

�2−D2
i

2
,

respectively. Furthermore we define a line in homogeneous coordi-
nates as

L =
�

(x,y) ∈ R2|l1x+ l2y+ l3 = 0
�

, (9)

which after setting l = [l1 l2 l3]T can be written as

lT x = 0. (10)

If we consider N reflectors in our acoustic environment, then every
channel of our identified AIRs should contain information about the
N reflective path TOAs. By estimating these TOAs we can construct
a set of M ·N ellipse representations from which the line parameters
of the reflectors can be obtained. If we group together M ellipses,
extracted from every channel estimate and associated with a partic-
ular reflector, then the line parameters of that particular reflector can
be estimated. Consequently for every k ∈ {1, · · · ,N} reflectors we
can define the following cost function,

Je

�
l,

�
C∗

i,k

�M−1

i=0

�
=

M−1

∑
i=0

���lT C∗
i,k l

���
2
, (11)

where M ≥ 3 and C∗
i,k = det(Ci,k)C−1

i,k is the adjoint of the conic-
matrix Ci,k.

3. PROPOSED METHOD
In this section we show how a line reflector can be estimated us-
ing an analytical minimization technique. In Section 3.1 we first
present the closed-form solution considering only one reflector. In
Section 3.2 we again consider all reflectors but follow on by group-
ing them together on a per-reflector basis in Section 3.2.2. Finally
in Section 3.3 we introduce a second stage correction technique
that improves the robustness and the numerical precision using the
Hough transform.

3.1 Closed-form solution for a single reflector
The cost function in (11) is a multivariate fourth-order polynomial
in l1, l2, l3. We notice that the cost function admits the trivial so-
lution l = 0. In order to find the global minimum we resort to
an analytical minimization technique. More specifically, we slice
the homogeneous coordinates space (l1, l2, l3) with the two planes
l1 = 1 and l2 = 1. On these two planes the cost function J(l) is not
homogeneous and the set of local minima can be found in an ana-
lytical way. By merging the minima found on the two planes, we
can obtain the global solution.

If we consider the case in which we iteratively estimate the line
reflectors one at a time (i.e. C∗

i,k in (11) reduces to C∗
i ) then we

can denote the coefficients of the adjoint conic associated to the ith
ellipse with the matrix

C∗
i =

� αi βi/2 δi/2
βi/2 γi εi/2
δi/2 εi/2 ζi

�
.

Using this notation the cost function can be expanded as

J(l) = ∑M
i=1[α2

i l4
1+γ2

i l4
2+ζ 4

i l4
3+2αiβil3

1 l2+2αiδil3
1 l3+2βiγil1l3

2+

+2γiεil3
2 l3+2δiζil1l3

3+2εiζil2l3
3+(2αiγi+β 2

i )l2
1 l2

2+

+(2αiζi+δ 2
i )l2

1 l2
3+(2γiζi+ε2

i )l2
2 l2

3+2(αiεi+βiδi)l2
1 l2l3+

+2(βnεn+γnδn)l1l2
2 l3+2(βnζn+δnεn)l1l2l2

3 ] .

(12)

Slicing J(l) with the planes l1 = 1 and l2 = 1 means comput-
ing J(l)|l1=1 and J(l)|l2=1, respectively. Notice that J(l)|l1=1 and
J(l)|l2=1 are no longer homogeneous. Fig. 1 shows an example of
slices J(l)|l1=1 and J(l)|l2=1 (right-hand side), for the configuration
of microphones and sources on the left-hand side.
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Figure 1: Example of cost functions J(l)|l1=1 and J(l)|l2=1
for a specific configuration of microphones and sources.

We proceed by finding the zeros of the gradient of J(l)|l1=1 and
J(l)|l2=1, which yields the sets

L1 =

�
l :

∂J(l)
∂ l2

����
l1=1

= 0 ∧ ∂J(l)
∂ l3

����
l1=1

= 0

�
, (13)

and

L2 =

�
l :

∂J(l)
∂ l1

����
l2=1

= 0 ∧ ∂J(l)
∂ l3

����
l2=1

= 0

�
. (14)

Notice that the partial derivatives of the slices J(l)l1=1 and J(l)l1=1
are polynomials of order 3, and therefore L1 and L2 contain 9 so-
lutions each. Some of them are in the complex domain and do not
admit solution. We denote with L̄1 and L̄2 the subsets of purely real
solutions of L1 and L2, respectively. We then define

L̄ = L̄1∪ L̄2 = {l1 . . . lK} , (15)

which contains K ≤ 18 candidate solutions. The global non-trivial
minimum of J(l) is selected as

l̂ = argmin
lm

J(lm) , lm ∈ L̄ . (16)

3.2 Geometrical relation between line estimates and ellipses
Having obtained an estimate of the reflector line using (16) our aim
is to estimate a number of points on the ellipses that are geometri-
cally related to the line, in order to numerically improve the solu-
tion by use of the Hough transform. Generally speaking, given M
ellipses and N reflector lines, our aim is to establish a collection of
points

p j � [x j y j]T , j = 0, . . . ,P, (17)

where M N−1 ≤ P ≤ 2M N−1, that are related to both the ellipse
C and the line l in the following way:
1. If l goes through C then we obtain two points of intersection.
2. If l touches C at one point, or in other words if l is tangent to

C, then we obtain one point of tangency.
3. If l does not go through C then we need to calculate the closest

point on the line with respect to the conic.
In the following, we will outline a methodology to check which of
the above three relationships is valid for any candidate reflector line.
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Figure 2: The line l (solid) intersects the ellipse at points pα and
pβ . The two parallel lines of l that are tangential to the ellipse at
points pTα and pTβ are represented by lT (dotted) that intersects the
ellipse at the two tangential points.

3.2.1 Analytical framework
Consider two lines that are parallel to l and tangential to the ellipse
at points pTα and pTβ . With reference to Fig. 2, we can construct a
line lT that goes through both points pTα and pTβ , and consequently
compute the points of intersection with the ellipse. For this we note
that the slope of l is given by m = − l1

l2 . Therefore the problem is
constrained to finding the points on the ellipse for which the tan-
gents have slope m. This can be achieved by implicit differentiation
of the ellipse defined in (5)

d
dx

(C ) = 2ax+2bx
dy
dx

+ c2y
dy
dx

+2d
dy
dx

+2by = 0 . (18)

After setting dy
dx = m the line that goes through both tangential

points can be expressed as

lT = [(a+bm)(b+ cm)(d + em)]T . (19)

For any line l it is possible to find the two points pTα and pTβ at
which two lines are both parallel to l, i.e. with slope m, and also tan-
gential to the ellipse. Since we can construct the line lT that goes
through both points pTα and pTβ from (19), all we need to do is to
compute the points of intersection of lT and the ellipse. First, we
will elaborate the methodology used to find the general intersection
points of a line and an ellipse and then show how this can be used
to compute points pTα and pTβ .
Given a line l that goes through the ellipse C, the points of inter-
section pα � [xα yα ]T and pβ � [xβ yβ ]T are given by

xα = l2
√

(A+B+C)+D
E , yα =−−l3 + l1 xα

l2
; (20)

xβ = − l2
√

(A+B+C)−D
E , yβ =−

−l3 + l1 xβ
l2

; (21)

with

A = b
�

bl2
3 −2d l2 l3−2e l1 l3 +2 f l1 l2

�
,

B = d
�

d l2
2 −2e l1 l2 +2c l1 l3

�
,

C = e2 l2
1 +2ael2 l3− c f l2

1 −a f l2
2 −acl2

3 ,

D = bl2 l3−d l2
2 − c l1 l3 + e l1 l2 ,

E = c l2
1 −2bl1 l2 +al2

2 .

Instead of using l in (20) and (21) to find the general solutions
pα and pβ , we can replace [l1 l2 l3]T with [lT1 lT2 lT3 ]

T , as given
by (19), such that

l � [(a+bm)(b+ cm)(d + em)]T , (22)
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in order to find pTα and pTβ . Since any line l will have two parallel
lines that are tangential to the ellipse, (20), (21) and (22) can be used
to check whether l goes through the ellipse, is tangential to the el-
lipse or does not go through the ellipse. If l cuts through the ellipse,
then the parallel line touching the ellipse at point pα will be either
to the left or right, above or below l. In other words L (xα ,yα )
will either be positive or negative. Therefore if L (xα ,yα ) is pos-
itive and l does indeed go through the ellipse, then by definition
L (xβ ,yβ ) must be negative. Consequently if L (xα ,yα ) < 0 then
L (xβ ,yβ ) > 0. If l is tangential to the ellipse, then L (xα ,yα ) is ei-
ther equal to zero, or not equal to zero. Therefore if L (xα ,yα ) = 0,
then L (xβ ,yβ ) �= 0. A similar argument holds for the case when
L (xβ ,yβ ) = 0. If l neither intersects or is tangential to the el-
lipse, then the two parallel lines touching the ellipse at points pα
and pβ are either both below, above, left or right of l. In other
words if L (xα ,yα ) > 0 then L (xβ ,yβ ) > 0. If L (xα ,yα ) < 0 then
L (xβ ,yβ ) < 0. Consequently in order to determine the relationship
between l and the ellipse, it is sufficient to compute

��sgn
�
L (xα ,yα )

�
+ sgn

�
L (xβ ,yβ )

��� , (23)

where sgn{ · } is defined as

sgn(x) =

� −1 if x < 0 ,
0 if x = 0 ,
1 if x > 0 .

If the result of (23) is 0, then l goes through the ellipse. If the result
is 1, then l is tangential to the ellipse. Finally, if the result is 2 then
the line does not intersect the ellipse.

3.2.2 Choosing candidate points

Given the analytical framework outlined in Section 3.2.1 it is possi-
ble to estimate a number of points pi that are related to each ellipse
in (11) and the candidate lines given by (15). Instead of estimat-
ing pi exhaustively for each ellipse and candidate lines, it is more
efficient to group candidate points on a per-reflector basis, denoted
p j,k. We define

p j,k, j = 0, . . . ,P† ; k ∈ {1, · · · ,N} , (24)

where M−1≤P† ≤ 2M−1, as the jth candidate point for every kth
reflector. Consequently for every kth reflector there will be M re-
lated ellipses. For each of the M ellipses

�
Ci,k

�
and each candidate

solution
�
l̂k

�
, related to the kth reflector, we first use (23) to check

whether the estimated line either intersects the ellipse, is tangential
to the ellipse or does not intersect the ellipse. In the first case, when
l̂k goes through the ellipse, it is sufficient to use (20) and (21) to
obtain the two points of intersection. In the second case, when l̂k is
tangential to the ellipse, we simply use either (20) or (21), since the
solutions will be equivalent, to obtain one point of tangency. In the
final case, where l̂k does not intersect the ellipse, we use (20), (21)
and (22) to obtain the two points pTα and pTβ : the tangential points
of the two parallels of l̂k on the ellipse. The reason why we com-
pute these two points is because one of them will be the closest
point on the ellipse and the other the furthest point on the ellipse,
with respect to the line. In order to then choose the closest point it
is sufficient to compute the distance of points pTα and pTβ and the
line, by projecting them both onto the line and selecting the shortest
distance such that

min






���l1 xTα + l2 yTα + l3
���

�
l2
1 + l2

2

,

���l1 xTβ + l2 yTβ + l3
���

�
l2
1 + l2

2




 . (25)

3.3 Improved reflector localization using the Hough transform
The Hough transform is a method for estimating the parameters of
a shape from its boundary points [7]. The idea can be generalised
to estimate the line parameters of L based on a selection of candi-
date points. In a noise-free scenario, and neglecting the effects of
machine precision, the global minimum of (16) will also be the true
solution, so that all ellipses will be perfectly aligned and yield a sin-
gle solution that is the common tangent to all ellipses considered.
However, in practice neither will the ellipses align perfectly to yield
the optimal line estimate nor will the minimum of (16) always rep-
resent the true global solution. For this reason we estimate a number
of candidate points p j,k, using the method outlined in Section 3.2.2,
which represent a best match between the estimated line

�
l̂k

�
for

each of the M ellipses
�
Ci,k

�
and every kth reflector. The Hough

transform method considers the following normal parametrization
[7]

ρ = x cosθ + y sinθ , (26)

which specifies a straight line by the angle θ of its normal and its
algebraic distance ρ from the origin. A point in the cartesian space
corresponds in the Hough parameter space to all the lines passing
through it, i.e. a sinusoid. Conversely, points in the parameter space
are transformed into lines in the cartesian coordinate space. Given
two points lying on a line with parameters ρ,θ , in the Hough param-
eter space the sinusoids corresponding to these two points intersect
at ρ,θ . Therefore, given a collection of points p j in the coordinate
space, it is possible to estimate the line parameters of a line which is
seen as a best-fit to that collection of points. If the points p j lie on a
straight or quasi-straight line, then by computing the intersection of
the sinusoids in the Hough space it is possible to obtain values for
θ and ρ from (26) that can be used to estimate the line parameters
of the best-fit. The Hough Transform for a single-reflector case is
shown in Fig. 3. Let ρ ∈ {−R,R} and θ ∈ {0,π}. For each point
[x j y j]T we calculate

ρ̂ = x j cos θ̂ + y j sin θ̂ , ∀θ̂ ∈ {0,π} . (27)

The results are stored in an accumulator A , initially set to zero,
which is incremented at every step such that:

A
�
ρ̂, θ̂

�
= A

�
ρ̂, θ̂

�
+1. (28)

The largest maximum of the accumulator given by
�
θ̂max, ρ̂max

�
= max

�
A

�
ρ̂, θ̂

��
, (29)

is then picked, which finally leads to the line parameters of the best-
fit:

l̂ = [cos(θ̂max) sin(θ̂max)(−ρ̂max)]T . (30)

4. EXPERIMENTAL VERIFICATION
To evaluate the performance of the proposed algorithm, Monte
Carlo simulations were performed for the geometric reconstruction
of an arbitrary rectangular room through iterative reflector local-
ization. An experimental environment was created to evaluate the
performance of the proposed algorithm in two variations. Experi-
ment A considers the case where the line parameters are estimated
using a traditional minimization approach as outlined in [5]. Exper-
iment B considers the case where the closed-form estimator with the
second stage Hough transform correction, outlined in this paper, is
employed. In both cases the same data-set was used.

Simulated AIRs were obtained with the source-image
method [8], taking fractional delays into account, for random source
and receiver placement in a rectangular room of random dimen-
sions 3–5 × 4–6 m with perfectly absorbing floors and ceilings.
The sound source (rs) and the microphones (ri) were uniformly
distributed inside the room, constraining the positions to be at a
distance of at least 0.5 m from each wall and with each microphone
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Figure 3: The Hough transform space graph showing the largest
maximum (red +).

being kept at a minimum distance of 0.5 m from the source. Note
that although the source and receiver placements were randomized,
the cases in which neighbouring peaks in the AIR are inseparable
are excluded from the data set. Additionally the simulations were
limited to only include first-order reflections. Also unlike the results
presented in [5] we consider the source location (rs) to be known.

4.1 Evaluation Criteria

The performance of the proposed algorithm was assessed by aver-
aging the results of 100 Monte Carlo runs. The evaluation of the
reflector localization algorithm is as follows. Let l and l̂ be the re-
flector line and the estimated reflector line, respectively. From the
reference reflector line l and its estimate l̂ we can evaluate the dis-
tance κ from r0 to a point on each line and the orientation α . The
distance and orientation can be evaluated by projecting r0 onto the

line such that κ = |l1 x0+l2 y0+l3|√
l2
1+l2

2
and ω = 2arctan

√
l2
1+l2

2−l1
l2 . The

accuracy of the reflector localization is measured in terms of:

• distance error εd = |κ − κ̂|;
• angular error εa = |ω − ω̂|;
• alignment error εl = l̂T l

�l̂� l� , where values closer to 1 indicate the
angle between the lines is small.

The mean (µ) and variance (σ ) of εd, εa and εl were calculated for
each experiment considering all located walls and individual walls
ranked in order of error. In some cases not all walls are identified
with the same degree of accuracy; ranking the error in this way
provides insight into the distribution of errors as a function of the
number of identified walls.

4.2 Results & Discussion

The results of the alignment, distance and angular error are given
in Tables 1 & 2. In terms of alignment the four walls are very
well localized using the original algorithm outlined in [5]. However
the closed-form estimator yields a perfect alignment in all cases,
µ(εl) = 1. In terms of distance and angular error the closed-form
estimator outperforms the original line estimator with lower mean
and considerably smaller variance. Averaged across all walls the
analytic line estimator presented in this paper achieves a µ(εd) and
µ(εa) of less than a cm and degree respectively. Note that the im-
provement of the second stage correction is not explicitly stated in
the table, but the gain in accuracy is calculated at about 21% for
µ(εd) and 18% for µ(εa), when compared to the values estimated
by the closed-form estimator alone. It can play an even more signif-
icant role and provide considerable advantages when considering a
MIMO case instead of the SIMO example outlined here.

Table 1: Alignment error results.
Exp. Walls µ(εl) σ(εl)

A All 0.996 0.055
A Best 1.000 0.000
A 2nd best 1.000 0.005
A 2nd worst 0.996 0.033
A Worst 0.987 0.105
B All 1.000 0.000
B Best 1.000 0.000
B 2nd best 1.000 0.000
B 2nd worst 1.000 0.000
B Worst 1.000 0.000

Table 2: Distance and angular error results.
Exp. Walls µ(εd) [cm] σ(εd) [cm] µ(εa) [◦] σ(εa) [◦]

A All 3.720 16.580 0.799 3.258
A Best 0.290 0.230 0.046 0.074
A 2nd best 1.390 6.130 0.264 1.606
A 2nd worst 3.820 12.300 0.956 3.544
A Worst 9.400 29.490 1.931 5.048
B All 0.926 1.169 0.215 0.426
B Best 0.206 0.210 0.034 0.030
B 2nd best 0.505 0.295 0.091 0.057
B 2nd worst 0.884 0.421 0.179 0.138
B Worst 2.109 1.756 0.555 0.737

5. CONCLUSIONS
An analytic solution using a closed-form estimator for localizing
2-D line reflectors using TOAs from SIMO acoustic impulse re-
sponses has been presented, circumventing the problem of converg-
ing to local sub-optimal solutions found with existing techniques.
Robustness is further improved for those cases in which the TOAs
contain errors with an approach based on the Hough transform.
The improvements gained using the closed-form estimator are con-
firmed by Monte Carlo simulations. The approach may also be use-
ful in developing future algorithms using sequential SIMO measure-
ments of a spatially moving source, by providing a computationally-
efficient means of combining multiple reflector line estimates.
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