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ABSTRACT
This work deals with the detection of blotches which
are specific degradations commonly affecting old movies.
The novelty of our approach consists in integrating a
preprocessing step into any conventional blotch detec-
tor operating in the spatial domain. This preprocess-
ing step aims at outputting candidate regions that may
be degraded. Its originality relies on the fact that it is
based on a statistical outlier detection test coupled with
a compensation motion method. Experimental results
carried out on real old movies, show that this prepro-
cessing highly improves the detection performances of
the conventional Simplified Rank Ordered Differences
(SROD) detector and the detector based on the Auto-
Regressive (AR) model.

1. INTRODUCTION

Films have the important role of tracing human civi-
lizations and historical events among the years. They
represent an invaluable data inherited from generation
to generation. Unfortunately, an important amount of
old films has been lost due to bad storage conditions
and handlings. Many efforts were firstly devoted by
archivists and researchers to save this heritage by manu-
ally restoring some degraded films. Therefore, the huge
amount of data to be restored makes the manual restora-
tion procedure infeasible. This is the reason why an au-
tomatic and digital restoration carried out on digitized
version of old films is advocated. Generally, a generic
restoration method is usually composed of two steps :
contaminated areas are detected before to be corrected.
In our work, we are interested in detecting special ar-
tifacts called blotches. These artifacts are caused by
imperfect archiving conditions and essentially originate
from the loss of gelatin and the presence of dust and
dirt on the surface of the film. Blotches randomly occur
in the sequence as dark or bright spots with arbitrary
shape, size and brightness. Given the randomness of
blotches, they hardly appear in successive frames with
the same location, shape and size. Consequently, they
cause temporal discontinuities in the sequence. This
property is exploited in almost all proposed blotch de-
tection methods as [1, 2]. In this paper, we propose
to design a preprocessing step which detects candidate
regions that may be blotched. In this way, the prepro-
cessing facilitate the detection task of any blotch detec-
tor operating in the spatial domain. The originality of
our approach relies on the fact that blotches are consid-
ered as local illumination variations between successive
frames. To the best of our knowledge, this property has

never been exploited by the reported blotch detectors.
Furthermore, an additional novelty consists in resorting
to statistical outlier tests to detect the candidate areas.
This paper is organized as follows. In Section 2, we give
a brief review of the main blotch detection methods.
Then, the new method we propose is detailed in Section
3. Finally, in Section 4, we provide the performances
of our method on both artificial and real degraded se-
quences and in Section 5, some conclusions are drawn.

2. A BRIEF STATE OF ART

Most of blotch detectors and that operate in the spa-
tial domain consider blotches as discontinuities between
the degraded frame I(k) of size L × L and its previous
and subsequent frames I(k−1) and I(k+1) respectively.
Hence, as shown by the block-diagram depicted in Fig-
ure 1, a motion estimation and compensation step are
firstly performed to reduce discontinuities due to object
motions, and subsequently, motion compensated frames

I
(k−1)
mc and I

(k+1)
mc are generated. Secondly, corrupted

pixels are found by comparing the differences between

their intensities and those of their homologous in I
(k−1)
mc

and I
(k+1)
mc according to a given threshold. For instance,

Nadenau and Mitra [3] have proposed to compare the
Rank Ordered Differences (ROD) between the current
pixel intensity value I(k)(x) and those of the six refer-
ence spatio-temporal neighbors P1, . . . P6 shown in Fig-
ure 2.
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Figure 1: Block-diagram of conventional blotch detec-
tor.

Let zm be the intensity value of the reference pixels
ordered by rank z1 < z2 < z3 < z4 < z5 < z6. Then,
the three order differences ROD(x, l) with l = 1, 2, 3 are
computed as follows:

ROD(x, l) =

{

zl − I(k)(x) if I(k)(x) ≤ (z3 + z4)/2
I(k)(x) − z7−l if I(k)(x) > (z3 + z4)/2.

(1)
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Figure 2: Reference pixels Pk used by the ROD detector.

The pixel x is considered as blotched if at least one
of the three ordered differences ROD(x, l) exceeds a
given threshold. Later, Van Roosmalen [2] has simplified
and improved this method by considering the Simplified
Rank Ordered Differences SROD defined by:

SROD(x) = max{0, z1 − I(k)(x), I(k)(x) − z6}. (2)

Pixels whose SROD values are greater than a given
threshold are judged as contaminated. Another detec-
tor based on an Auto-Regressive (AR) model was pro-
posed in [1]. The principle is to assume that uncor-
rupted frames follow an AR model of order P :

I(k)(x) = Î(k)(x) + e(k−1)(x) + e(k+1)(x) (3)

where

Î(k)(x) =
∑P

l=1 a
(k−1)
l I

(k−1)
mc (x + q

(k−1)
l )

+
∑P

l=1 a
(k+1)
l I

(k+1)
mc (x + q

(k+1)
l )

(4)

where the a
(k−1)
l and a

(k+1)
l (l = 1, . . . , P ) are the 2P

AR model coefficients estimated from a support of pixels

belonging to I
(k−1)
mc and I

(k+1)
mc , and the ql denotes the

relative positions of these reference pixels with respect to
the underlying pixel. A pixel at the location x is judged
as corrupted if (e(k−1)(x))2 > T and (e(k+1)(x))2 > T
where T is a given threshold.
The main drawback of these methods is the high false
alarms rate they generate. This may be due to the unre-
liability of the motion estimation in presence of blotches.
In this paper, our rationale is to consider a blotch as a
local brightness variation between the degraded frame
I(k) and its previous and subsequent frames. Conse-
quently, we adopt an affine Motion Estimation (ME)
technique which was found to be robust to the illumi-
nation variations [5] and we propose to exploit the in-
formation provided by the ME step in order to define
potential candidate of bloched regions.

3. PROPOSED APPROACH

In order to improve the performances of the conventional
detectors depicted in Figure 1, we add a preprocessing
step driven by the affine ME step to select candidate
blocks before the blotch detection is carried out. The
block diagram of the proposed detector is depicted in
Figure 3 and it is detailed in the sequel.
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Figure 3: Block-diagram of the proposed detector.

3.1 Robust motion estimation

By considering that a blotch is a local temporal illu-
mination variation within the sequence, it is necessary
to resort to a motion model that handles the temporal
brightness variations. In this respect, the affine model
[5] is widely used:

I(k)(x) = h(k−1)(x)I(k−1)(x − d(k−1)(x)) + b(k−1)(x)
(5)

where h(k−1)(x) is the illumination prediction coeffi-
cient, and b(k−1)(x) is an additive noise. d(k−1) is the
displacement vector of pixel x between k−1 and k. Gen-
erally, this model is considered to be locally valid. More
precisely, it is used to split I(k) into disjoint blocks B(q,r)

of size ℓ×ℓ where (q, r) denotes the spatial position (q, r)
of the leftmost top pixel in the block. The motion vector
and the illumination prediction coefficient are assumed
to be constant for all the pixels within B(q,r). Further-
more, a search area S of size (ℓ+2p)×(ℓ+2p) is defined
in I(k−1) where p is the maximum displacement allowed
horizontally and vertically. Then, the block within S
that matches B(q,r) according to a given matching cri-
terion C is searched for. Very often, the mean square
error is retained for C:

C(d, h
(k−1)
(q,r) , b

(k−1)
(q,r) ) =

∑

x∈B(q,r)
(I(k)(x) − h

(k−1)
(q,r) I(k−1)(x − d) − b

(k−1)
(q,r) )2.

(6)
In this case, the multiplicative and additive coefficients
are firstly estimated for each displacement d (or equiv-
alently each candidate block in S):

h
(k−1)
(q,r) (d) =

Cov[I(k)(x)I(k−1)(x − d)]

σ2
I(k−1)(x−d)x∈B(q,r)

b
(k−1)
(q,r) (d) = mI(k)(x)x∈B(q,r)

− h
(k−1)
(q,r) mI(k−1)(x−d)x∈B(q,r)

where σ2 is the variance of I(k−1), Cov denotes the co-
variance function, and mI(k)(x)x∈B(q,r)

is the mean value

of the pixels within the block B(q,r). The most suitable

motion vector d
(k−1)
(q,r) associated to the block B(q,r) is

then easily deduced by:

d
(k−1)
(q,r) = arg min

d∈S
C(d, h

(k−1)
(q,r) (d), b

(k−1)
(q,r) (d)) (7)

Consequently, it is straightforward to generate the mo-

tion compensated frame I
(k−1)
mc . A similar procedure
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with the reference frame I(k+1) allows also to compute a

motion vector d
(k+1)
(q,r) and a prediction coefficient h

(k+1)
(q,r)

and the motion compensated frame I
(k+1)
mc .

3.2 Proposed preprocessing

For all the blocks B(q,r) in I(k), we obtain a set H(k−1) =

{h
(k−1)
(q,r) }(q,r). Corrupted blocks have illumination coef-

ficients that take isolated values among the distribution
of all coefficients of the remaining blocks since there is
no exact match between corrupted block and the refer-
ence one. An example of the coefficient distribution is
given in Figure 4 where the corrupted block is shown in
red. This has motivated us to consider that the values
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Figure 4: An example of the distribution of {h
(k−1)
(q,r) }(q,r)

values in the cases of non blotched and blotched image

associated to contaminated blocks correspond to out-
liers of the set H(k−1). Consequently, a detection of
candidate blotched blocks reduces to detect outlier val-
ues of H(k−1). In this respect, we resort to a statistical
test to find these multiple outliers. More precisely, we
retain the statistical Minimum Covariance Determinant
(MCD) test for its efficiency and relatively low complex-
ity [4]. Likewise the majority of the statistical tests, the
MCD test requires that the underlying data within the
sample set are normally distributed. Therefore, we have
to proceed to a Gaussianization of the set H(k−1) by
applying the Box and Cox power transform [6] to map

H(k−1) into a set H̃(k−1) of realizations of a Gaussian
random variable

∀(q, r) h̃
(k−1)
(q,r) =

(h
(k−1)
(q,r) )λ − 1

λ
(8)

where λ is a parameter which can be estimated accord-
ing to the maximum likelihood criterion. Note that the
Box and Cox transform requires the positivity of the
observations and consequently, H(k−1) is initially trans-
lated to obtain positive values prior to apply the trans-
form.
The key idea of the MCD test is to search for the most

concentrated subset H̃
(k−1)
c of size r = ⌊(1−ǫ)N⌋ among

some predefined r-subsets where N is the size of H̃(k−1),

ǫ corresponds to the smallest amount of outlier contam-
ination that can have an arbitrarily large effect on the

mean and variance estimates. The subset H̃
(k−1)
c is

determined by firstly, ordering the observations in in-

creasing order: h̃
(k−1)
(1) ≤ h̃

(k−1)
(2) ≤ . . . ≤ h̃

(k−1)
(N) . Sec-

ondly, for i = 1, . . . , N − r + 1, contiguous subsets

R
(k−1)
i = {h̃

(k−1)
(i) , . . . , h̃

(k−1)
(r+i−1)} of size r are defined.

The estimators µ̂i and σ̂2
i of respectively the mean and

the variance of each subset R
(k−1)
i are computed:

µ̂i =
1

r

r+i−1
∑

n=i

h̃
(k−1)
(n) , σ̂2

i =
1

r

r+i−1
∑

n=i

(h̃
(k−1)
(n) − µ̂i)

2. (9)

Let i∗ be the index of the subset having the lowest vari-

ance. The robust Euclidean distance d(h̃
(k−1)
n ; µ̂i∗ , σ̂i∗)

allows to measure how far away any observation h̃
(k−1)
n

from the center µ̂i∗ of R̃i∗ relative to its size:

∀n = 1, . . . , N, d(h̃(k−1)
n ; µ̂i∗ , σ̂i∗) = |h̃(k−1)

n − µ̂i∗ |/σ̂i∗ .
(10)

Given that the squared distance d2 has a χ2
1 distribu-

tion with one freedom degree, an observation h̃
(k−1)
n is

considered as an outlier if d2(h̃
(k−1)
n ; µ̂i∗ , σ̂i∗) exceeds a

threshold easily derived from a two-tailed test for a given
confidence value ε.
The same procedure is applied to the set H(k+1) in order
to detect suspicious blocks in the forward direction. Fi-
nally, a block Bc

(q,r) is judged as a blotched candidate if

both, the corresponding h̃
(k−1)
(q,r) and h̃

(k+1)
(q,r) are detected

as outliers. Note that these two conditions should be
simultaneously satisfied because of the temporal discon-
tinuity of the blotches.
This preprocessing step is a blotch detector by itself.
Therefore, it detects contaminated blocks which may be
parts of bloched areas whose shape are not necessarily
rectangular. For this reason, a refinement step is neces-
sary and consists of applying any heuristic detector such
as described in Section 2, on the candidate blocks.

4. EXPERIMENTAL RESULTS

The proposed preprocessing step should be evaluated
in order to firstly adjust the optimal values of the pa-
rameters on which it depends, and secondly, measure
its contribution within the final blotch detector shown
in Figure 3. Thus, two rounds of experiments are per-
formed. The first round consists in the evaluation of the
preprocessing step according to its own parameters: ε is
varying from 0.5 to 1 by step of 0.04, for different block
sizes ℓ and different values of p. The second round of
experiments aims to compare the performances of the
whole detector coupled with the SROD detector and
the detector based on the 3D AR model. As suggested
by Roosmalen in [2], the retained support for the 3D
AR based detector is depicted in Figure 5.
Tests are carried out on a set of 20 frames extracted
from the “La Bataille du pacifique” sequence where 9
frames are artificially degraded. The artificial degrada-
tion consists of adding real blotches by using ground
truth (GT) dirt maps obtained thanks to a special
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infrared-film scanner. These maps typically show dirt
as darker areas set against a lighter background. The
binary ground truth masks are generated through a
thresholding of the related infrared images. The thresh-
old values are manually set in order to find the binary

GT mask M
(k)
g as close as possible to the human per-

ception of these defects. A set of 5 real degraded frames
extracted from the “Gallipoli” sequence are also used in
the experiments. The GT masks showing blotches posi-
tions affecting the real sequence are also obtained man-
ually according to the human perception of the degra-
dations. For all the experiments, the detection perfor-
mances are measured in terms of good detection rate

Pc =
|M(k)

⋂

M(k)
g |

|M
(k)
g |

, false alarm rate Pf =
|M(k)

⋂

M
(k)
g |

|M
(k)
g |

and error rate Pe = P1(1 − Pc) + (1 − P1)Pf , where

P1 =
|M(k)

g |

L2 and | · | denotes the number of ones con-
tained in the considered sets. Receiver Operator Char-
acteristic (ROC) curves are used for the evaluation. It
is worth noting that since the experiments are applied
to an extract of the sequence, several values of Pf and
Pc are obtained. ROC curves depicted in Figure 6 plot
the mean value of Pc among all values of Pc obtained for
all the frames by varying ε, versus the mean value of Pf

obtained for all Pf related to all the frames. This figure
shows good performances of the proposed preprocessing
step, particularly when ℓ = 8 and p = 5. The best re-
sults are obtained when ε = 0.88 for the “La Bataille
du pacifique ” extract, and ε = 0.8 for the “Gallipoli”
sequence. We also plot in Figure 7 the mean value of
the error rates Pe for each value of ε.
For the remaining tests, we choose ε = 0.8 as it is less
tolerant to outliers, and as false positives will be omitted
by the refinement step of the detector.

Figure 5: Pixels used as support from reference frames
for the 3D AR detector.

To emphasize the importance of the proposed pre-
processing, the second round of tests aims at integrat-
ing it prior to the SROD detector, and then prior to the
3D AR model based detector. Figure 8 shows the ob-
tained results on two artificially degraded frames respec-
tively extracted from the “Gallipoli ” and “Tierce ” se-
quences. We can easily note the substantial gain drawn
from the proposed preprocessing for both retained de-
tectors. Thanks to the block candidate selection step,
the false alarm rates decrease at the same rate of correct
detections.
A qualitative evaluation is performed on a real degraded
frame extracted from the “Gallipoli” sequence (frame
#195). Figure 4 allows a visual inspection and confirms
the efficiency of the proposed preprocessing step com-
pared to the classical SROD detector (we have used the
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Figure 6: ROC curves evaluating the preprocessing step
by varying ε for different values of (ℓ, p). Top: “La
Bataille du pacifique” extract. Bottom: the “Gallipoli
” extract.

same value of threshold for both detectors). It is worth
pointing out that there is also a real illumination vari-
ation between the degraded frame and its subsequent
one which explains the high false alarms rate obtained
by the SROD detector.

5. CONCLUSION

We have proposed in this paper an efficient preprocess-
ing step of any blotch detector operating in the spa-
tial domain. Its novelty relies on the hypothesis that
a blotch could be viewed as a local temporal illumina-
tion variation. Experimental results have shown the effi-
ciency of the preprocessing step in reducing false alarms
rate, and the robustness of the proposed approach to
the illumination variation within the sequence of state-
of-art bloch detector.
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