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ABSTRACT

The main objective of fMRI analysis methods is to detect the

Blood Oxygenation Level Dependent (BOLD) from fMRI

sequences. Algorithms which are discussed here are known

as data-driven methods. The main advantage of these types

of algorithms over data-based methods is that there is no

need for prior information. Here, we focus on one of the

powerful matrix factorization algorithms which has been re-

cently applied to fMRI called Non-negative Matrix Factor-

ization (NMF) [1]. There exist many different NMF tech-

niques in the literature and no comprehensive assessment of

their performances on fMRI data has been reported. So, in

this work the performance in terms of BOLD detection, us-

ing α−Deivergence based methods are investigated and then

compared with the commonly used Euclidean distance based

method. The aim is to highlight the advantages that such

techniques can have in practice. We explored the perfor-

mance of these techniques for two types of real fMRI and

also synthetic data. We observed that the α−Divergence

based methods are also applicable to fMRI data and reveal

acceptable performance.

1. INTRODUCTION

Nonnegative Matrix Factorization (NMF) [2] has been

known as a powerful method for nonnegative data analysis

such as rank reduction and separating hidden sources. NMF

has found many applications in different areas, for example,

machine learning, clustering, pattern recognition, and data

mining. The aim of NMF is to find an approximate fac-

torization for a nonnegative matrix V into two nonnegative

matrices W and H. The columns of W are called basis func-

tions, while the rows of H represent the hidden nonnegative

sources which correspond to each basis function. In con-

trast to other methods such as Principal Component Analysis

(PCA) or Independent Component Analysis (ICA), the non-

negativity constraint in NMF produces sparse results which

is advantageous [3, 4].

There are various cost functions to evaluate the error

of factorization. Squared Euclidean distance and general-

ized Kullback Leibler divergence are the best known and

the most frequently used cost functions in NMF [5]. Some

other cost functions are Csiszar’s divergence [6], Bregman

divergence [7], generalized divergence measure [8] and α
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or β divergences [9]. A suitable cost function can be de-

termined based on the assumption about noise distribution.

When E = V−WH is modeled as normal distribution, the

Squared Euclidean distance is an optimal choice. In some

applications, such as pattern recognition, image processing

and statistical learning, noise is not necessarily Gaussian and

the cost functions based on information divergence are often

used.

In this paper, we investigate the application of NMF algo-

rithms based on α-Divergence which are recently derived by

Cickocki’s group, for functional magnetic resonance imaging

(fMRI) data [10]. The main goal of this work is to analyze

the results of these algorithms for fMRI data and compare

their performances with other NMF algorithms.

fMRI is a useful neuroimaging technique to study both

functional and anatomical behaviors of brain. fMRI mea-

sures the hemodynamic response (HDR) resulted from neural

activity. When brain neurons are activated, their consump-

tion of oxygen increases and as a result the blood flow in the

activation zone increases. This change in the level of oxy-

genation and blood flow affects the intensity of the recorded

MRI images. The aim of fMRI techniques is to detect the re-

sulting signal change called BOLD signal. For more detailed

description about fMRI principles one can refer to [11].

The rest of the paper is organized as follows. In the next

section, we mathematically represent the NMF techniques

which are used in this paper. Then, in section 3, the exper-

imental results of applying different methods are given and

compared. Finally, the conclusion is drawn in section 4.

2. NON-NEGATIVE MATRIX FACTORIZATION

FOR BOLD DETECTION

The following problem is considered in NMF formulation.

Given a nonnegative matrix V ∈ R
m×n containing the input

data, we must find two nonnegative matrices W ∈ R
m×k and

H ∈ R
k×n such that:

Vi j ' (WH)i j =
k

∑
a=1

WiaHa j, (1)

where k presents the rank of factorization and is assumed

to be known or estimated by information-theoretic criteria.

In order to complete the factorization process an appropriate

cost function should be defined and then minimized. Equa-

tion (2) shows the most widely used NMF cost function
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which employs Euclidean distance between the data matrix

V and multiplication of the factors:

D = ‖V−WH‖2 = ∑
i j

[Vi j− [WH]i j]
2 (2)

Multiplicative update rules for the above optimization prob-

lem have been derived by Lee and Seung [5]. They proved

that the referred cost functions would converge to a local

minima under these update rules.

Recently, a family of new algorithms based on the α-

Divergence has been proposed by Cichocki et al. [10]. The

following equation shows the basic α-Divergence between V

and WH:

D =
1

α(α−1) ∑
i j

[Vα
i j(WH)1−α

i j −αVi j +(α−1)(WH)i j]

(3)

The above equation is normally applied for α ∈ [0 2].
The four following distances are those that are commonly

used for different values of α:

• Kulback-Leibler (KL) I-Divergence (α → 1):

D = ∑
i j

[Vi j ln
Vi j

(WH)i j

−Vi j +(WH)i j] (4)

• Dual KL I-Divergence (α → 0):

D = ∑
i j

[(WH)i j ln
(WH)i j

Vi j

+Vi j− (WH)i j] (5)

• Squared Hellinger Divergence (α = 0.5):

D = ∑
i j

(
√

(WH)i j−
√

Vi j)
2 (6)

• Pearson Divergence (α = 2):

D = ∑
i j

(Vi j− (WH)i j)
2

(WHi j)
(7)

The choice of optimal α depends on the application and the

data. Equations (8) and (9) present the main learning rules

for α-Divergence algorithms. These update rules are suitable

for large scale NMF [9] and can be expressed as:

Wi j← (Wik(∑
j

Hk j(
Vi j

(WH)i j

)α)(ω/α))1+αsW (8)

Hi j← (Hk j(∑
i

Wi j(
Vk j

(WH)k j

)α)(ω/α))1+αsH , (9)

where ω is the over relaxation parameter and is typically se-

lected between 0.5 and 2. Over relaxation parameter accel-

erates the convergence and stabilizes the algorithm. αsw and

αsh are small positive parameters which are used to enforce

the sparsity constraint on the algorithm.

In the next section, we apply these update rules for de-

tecting the BOLD area in the brain. The aim is to illustrate

the performance of these NMF techniques and see whether

they can be extended as a main tool for this application. We

also compare these results to the results of Euclidean dis-

tance based method which is the common NMF technique

already applied to this problem [12]. It is also worth noting

that although data driven techniques can be applied directly

and with no prior information on fMRI data, incorporating

some available prior knowledge may be possible in the form

of additional constraints, which has been reported recently in

[1] but is not dealt here.

3. EXPERIMENTAL RESULTS

We used the α-Divergence based NMF algorithms to detect

brain activation in a set of synthetic and real fMRI data. In

order to find optimal value of α , source separation procedure

was repeated with different α values. Moreover, the perfor-

mance of the groups of α algorithms were compared with

more common NMF algorithms such as Euclidean distance

based methods.

3.1 Data sets

3.1.1 Synthetic Data

The simulated data was provided by Machine Learning for

Signal Processing laboratory [13]. The statistical proper-

ties of the fMRI sources are used as the basic knowledge

for producing this data set. In general, fMRI sources are

divided into two main groups: signals of interests and ar-

tifacts [14]. The signals of interests include task-related,

function-related and transiently task-related signals and as-

sumed to have a super-gaussian distribution. The artifacts in-

clude physiology-related, motion-related and scanner-related

signals and assumed to have a sub-gaussian distribution. The

simulated fMRI data contains both types of sources and their

corresponding time courses (Figure 1). The aim of fMRI

analysis methods is to separate task-related source or BOLD

from the image sequence. The top row in Figure 1 shows the

simulated BOLD which has to be detected.

In order to generate the mixtures, the matrix of time

courses is multiplied by the matrix of sources. Further, in

order to evaluate the performance of the applied NMF al-

gorithms, we used the SIR value of separated task-related

source. The SIR value is defined as follows:

SIR = 20log
‖h‖2

∥

∥h− ĥ
∥

∥

2

(10)

where h is the extracted task-related source and ĥ is the actual

task-related source or BOLD.

We evaluated Amari’s approach based on α-Divergence

[15, 16], Dual KL I-Divergence, KL I-Divergence, Hellinger

Divergence and Pearson Divergence for this data set for 100

times. Our experiments show that the best convergence of

these algorithms is obtained when the over-relaxation param-

eter is ω = 1.9 and sparsity regularization parameters are
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Figure 1: Simulated fMRI

αsW = αsH = 0.001. The average SIR was computed us-

ing equation (10) . Figure 2 shows the computed average

SIR value for the results of different α−Divergence based

NMF algorithms. It is seen from the figure that the best SIR

for Amari’s approach is obtained when α = 0.5. Moreover

the KL I-Divergence and Square Hellinger Divergence show

higher SIR compared to Dual KL I-Divergence and Pearson

Divergence.
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Figure 2: Computed SIR of source of interest for different

methods.

In addition to the pervious methods, we applied Eu-

clidean distance to factorize the simulated mixtures into

sources and time courses. The computed average SIR for

this experiment was 29.33 dB, which is higher compared to

the results of α−Divergence based methods. Here, the spar-

sity constraint was used to obtain more accurate results. In

addition, the regularization sparsity parameter was selected

as 0.1 for this part of the experiment.

3.1.2 Real Data

The real data sets which are used in this work are taken

from the SPM website [17]. The first data set is Auditory

fMRI data from single subject experiment. This data set,

taken from the whole brain, was acquired by a 2T Siemens

MAGNETOM Vision scanner with the scan to scan repeat

time (TR) of 7 seconds. The Auditory stimulus is bi-syllabic

words presented binaurally at a rate of 60 per minute. The

data set contains 96 scans and each scan consists of 64 con-

tiguous slices (64× 64× 64,3× 3mm× 3mm3voxels). The

96 scans include 8 blocks of size 12, each of which contain-

ing 6 scans under rest and 6 scans under auditory stimula-

tions.

The second data set is a Visual fMRI data and was col-

lected using a 2T Siemens MAGNETOM vision system.

There are 360 scans during the four runs in this data set. Each

run consists of four conditions which are fixation, attention,

no attention and stationary. In the attention condition the

subject should detect changes and during the no attention

condition the subject was instructed to just keep eye open.

During the attention and no attention conditions subjects fix-

ated centrally, while white dots emerged from the fixation

point to the edge of the screen.

In our experiments on real fMRI data, we applied

Amari’s approach with α = 0.5 and KL I-Divergence to

both data sets. Visual comparison of the results for differ-

ent methods is difficult. However Figures 3 and 4 present

the results obtained by KL I-Divergence. Figure 3 shows the

extracted task-related source (BOLD) and its corresponding

time course of the first data set. As it is seen, the activated

region is correctly detected for different brain slices.

Figure 4 presents the results of applying KL I-Divergence

to the visual fMRI data set. We can clearly see the detected

BOLD in the occipital lobe which is responsible for visual

processing tasks. The extracted time course also verifies the

temporal behavior of activation.

In order to compare the performance of α−Divergense

based methods and Euclidean distance which is more popu-

lar for fMRI analysis, the normalize correlation between the

extracted time-course and the predicted temporal response

of brain has been calculated. Temporal response of brain

to a specific task can be modeled by convolving the task-

waveform and the hemodynamic response function (HDR)

[1, 18]. The results show that the normalized correlation

between the extracted time-course and the predicted tempo-

ral response of brain for the results of Euclidean distance

has higher value than those for the two other α−Divergence

based method. The numerical results of this comparison for

both data set are given in Table 1.

4. CONCLUSION

The problem of BOLD detection using a source separation

method was presented. Five different variations of NMF

technique were applied to fMRI data. These methods include

Amari’s approach, Dual KL I-Divergence, KL I-Divergence,
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Table 1: Normalized correlation between the extracted

BOLD time course and predicted temporal response of brain.

Auditory data set Visual data set

KL I-Divergence 0.6950 0.8736

Amari’s approach α = 0.5 0.6371 0.8152

Euclidean distance 0.8689 0.9102

Hellinger Divergence, and Pearson Divergence. In con-

trast to Euclidean distance based method, the α−Divergence

based methods consider non-Gaussian distribution for noise

in the factorization process. We then presented the results of

these methods together with Euclidean distance based one.

We observed that the α−Divergence methods are very sen-

sitive to selection of over-relaxation parameter which is a

disadvantage. However, the separation results of these tech-

niques were correct and comparable to those of obtained by

applying Euclidean distance based method. We can further

investigate the flexibility of α−Divergence based algorithms

in adding constraints, which has to be explored in the the

future.
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(a) The spatial map obtained by KL I-Divergence method
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Figure 3: Auditory data analysis results.

(a) The spatial map obtained by KL I-Divergence method
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(b) The corresponding time-course

Figure 4: Visual data analysis results.
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