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ABSTRACT
Khatri-Rao space-time (KRST) coding is an efficient scheme pro-
posed in the last decade for multi-antenna communication systems.
The decoding process results on a tensor decomposition with in-
teresting blind decodability properties. In this paper, we consider
its extension to cooperative networks where each node has a single
antenna. For this purpose, we propose a distributed KRST cod-
ing and decoding technique. The proposed distributed decoding
scheme is based on average consensus embedded in an alternating
least squares (ALS) algorithm. Unlike standard consensus algo-
rithms where consensus is reached asymptotically, we derive closed
form solutions allowing to reach the consensus in a finite number
of iterations upper-bounded by the number of collaborating nodes.
The performance of the proposed method is evaluated by means of
simulations.

1. INTRODUCTION

In wireless communication systems, spatial diversity plays a key
role in combating signal fading arising from multipath propagation.
As long as the transmitter is equipped with multiple antennas, it
is well known that spatial diversity can be exploited further at the
transmitter by means of space-time coding [1]. In contrast to con-
ventional (single-user) space-time coding/decoding, when dealing
with cooperative wireless networks, spatial diversity must resort to
distributed space-time coding/decoding, where a collection of dis-
tributed antennas belonging to multiple terminals work in a coordi-
nated way to encode/decode the transmitted information [2].

In the last decade, new signal processing techniques based on
tensor modeling have been developed for blind channel estimation
and information recovery [3, 4, 5, 6]. In [7], a Khatri-Rao space-
time (KRST) coding technique based on tensor modeling has been
exploited to design space-time codes with variable multiplexing-
diversity tradeoff and built-in blind detection property. Therein, the
authors consider the use of an antenna array physically mounted at
both the transmitter and/or the receiver. By combining tensor mod-
eling with the idea of cooperative signal processing, the authors
have shown in [8] that blind information recovery can be carried
out in a distributed way. The work derived a distributed alternat-
ing least squares algorithm based on average consensus, for blind
channel and symbol estimation in a direct-sequence code division
multiple access (DS-CDMA) wireless sensor network. In a consen-
sus problem, a group of network nodes try to reach agreement on a
given quantity of interest that depends on their local values [9]. By
using linear iterations, it is now well known that consensus can be
asymptotically reached given some conditions on the graph model-
ing the interactions between nodes.
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Back. André L.F. de Almeida is partially supported by CNPq/Brazil (Grant
no. 303238/2010-0)

In this paper, we consider the problem of space-time coding
and decoding in a wireless cooperative network and propose a dis-
tributed KRST coding technique combined with a finite-time aver-
age consensus algorithm for distributed blind KRST decoding and
channel estimation.
Notations: Vectors are written as boldface lower-case letters
(a,b,· · · ) and matrices as boldface capitals (A,B,· · · ). Ai. and A. j
denote respectively the ith row and the jth column of the I× J ma-
trix A. AT , AH , and A† stand respectively for the transpose, the
complex conjugate, and the Moore-Penrose pseudoinverse of A.
JK = 11T and IK denote respectively K×K all ones matrix and an
identity matrix. diag(.) is the operator that forms a diagonal matrix
from its vector argument whereas vec(.) forms a vector by stacking
the columns of its matrix argument. For X ∈CI×R, and Y ∈CJ×R,
the Khatri-Rao product, denoted by �, is defined as follows:

X�Y =


Ydiag(X1.)
Ydiag(X2.)

...
Ydiag(XI.)

 ∈ CIJ×R. (1)

2. COOPERATIVE TRANSMISSION

Let us consider a wireless network with a set of transmitting ter-
minals denoted S = {1,2, · · · ,N}. A given transmitting source
terminal s ∈S has information to transmit to a single destination
terminal denoted d(s) /∈ S , potentially using terminals S −{s}
as relays. We consider an amplify-and-forward based transmission
protocol that consists in two phases [10]. In the first phase, the
source transmits a coded information to the relays using orthogonal
channels. In the second phase, both the source and the relays si-
multaneously transmit to the destination. In such a way, the source
terminal and the relays constitute a virtual transmitting antenna ar-
ray.

We consider block transmissions where the data stream is first
parsed into vectors. Let st = ( s1,t · · · sM,t )T ∈ CM×1, t =
1, · · · ,T , be the data vectors to be transmitted at time instant t. First,
the source terminal encodes the data as follows:

s̄n,t = An.st

where the coding matrix A =
(

AT
1. · · · AT

N.

)T ∈ CN×M is
unknown by the relays but known to the destination node. Then
the encoded data s̄n,t is transmitted to the nth relay, n = 2,3, · · · ,N,
n = 1 corresponding to the source terminal itself.

The nth relay node, independently from the others, amplifies,
with repetition, the received data and transmits the data vector

c̄n,t = s̄n,tC.n ∈ CL×1.
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Without lack of generality, we assume, for each time block t, the
first transmissions are not amplified. Therefore the first row of C is
an all ones vector.

In matrix form, the virtual antenna array formed by the N relay
nodes transmits the data matrix

C̄t =

 c̄T
1,t
...

c̄T
N,t

= diag(Ast)CT . (2)

Such a scheme corresponds to a Khatri-Rao Space-Time (KRST)
encoding through a virtual antenna array. KRST was introduced in
[7] for multi-antenna communication systems. It exploits potential-
ities of tensors and multilinear algebra.

3. COOPERATIVE AND DISTRIBUTED DECODING

As for the transmission front-end, the destination node belongs to
a set of nodes K = {1, · · · ,K}, K

⋂
S = /0, that collaborate. The

interactions between these nodes are modeled by means of an undi-
rected connected graph G = {K ,E } where E denotes the edge set,
each edge {i, j} ∈ E being an unordered pair of distinct nodes.
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Figure 1: Cooperative communication system.

Let us assume that the communication channel is flat-fading
and constant during block-time of length LT . We denote by H ∈
CK×N the channel matrix between the N transmitting nodes and
the K receiving ones. We can then write the received data matrix
Y..t ∈ CK×L as:

Y..t = Hdiag(Ast)CT = Hdiag(Bt.)CT , t = 1, · · · ,T. (3)

with BT = AS, S = ( s1 · · · sT ). The matrices Y..t , t =
1, · · · ,T can be viewed as slices of a third-order tensor Y∈CK×L×T

along the third mode. Equivalently, we can define the slices along
the first and the second modes as follows:

Yk.. = Cdiag(Hk.)BT , k = 1, · · · ,K. (4)

Y.l. = Bdiag(Cl.)HT , l = 1, · · · ,L. (5)

The aim of the blind decoding process is to recover the M×T data
matrix S solely from the received data tensor Y. In fact, from (3)
we can deduce that Y admits a CP model, also known as PARAFAC
model [11], whose factor matrices are H, B, and C. These factor
matrices are essentially unique if [12, 3]

kH + kB + kC ≥ 2(N +1), (6)

where kH denotes the Kruskal-rank, also called k-rank, of H, i.e.
the greatest integer kH such that any set of kH columns of H is in-
dependent. Recall that essential uniqueness means that each factor
matrix can be determined up to column scaling and permutation.

Assuming that the communication system fulfilled the above
condition, we derive in the sequel the associated decoding algo-
rithm. In fact, the decoding process has two main phases. It begins
by fitting the CP model, i.e. estimating the factor matrices H, C,
and B, and then, knowing A, the information matrix S is deduced
from the encoded information matrix B.

3.1 Cooperative decoding using the Distributed Alternating
Least Squares algorithm
Each node, numbered k, has at its disposal a matrix Yk.. contain-
ing linear combinations of the entries of the information matrix
B. Since C and the channel parameters are unknown, retrieving
B needs to carry out a bilinear decomposition, which is non unique
in general. By viewing Yk.. as a slice of a third-order tensor admit-
ting a CP decomposition, the information matrix can be uniquely
retrieved if all the slices are available at the destination node. Fit-
ting the CP model is generally carried out using the Alternating
Least Squares (ALS) algorithm. It acts by alternately minimizing
the following cost functions in the Least Squares (LS) sense

JK =
∥∥∥YK − (H�C)BT

∥∥∥2

F
(7)

JT =
∥∥∥YT − (B�H)CT

∥∥∥2

F
(8)

JL =
∥∥∥YL− (C�B)HT

∥∥∥2

F
. (9)

The matrices YK ∈CKL×T , YL ∈CLT×K , and YT ∈CT K×L, called
unfolded matrices, are obtained by concatenating slices of the same
type, i.e. YK =

(
YT

1.. · · · YT
K..

)T for example.
In a cooperative framework, one can take advantage of unique-

ness of CP by sending the matrices Yk.. to the destination node
where collected data can be cast into a tensor Y . However, such
a scheme requires additional storage ressources for the destination
node. Recently, the authors have proposed a distributed version of
the ALS algorithm (D-ALS) [8]. With D-ALS, there is no need
to resort to additional storage capacities and all the collaborating
nodes compute exactly the same CP factor matrices. However, the
full decoding process can only be achieved by the destination node,
the coding matrix A being unknown to the other nodes.

The main idea in D-ALS is to locally estimate the rows of H
at each node, while distributively estimate B and C in the network,
by computing respectively the LS solutions of (7) and (8):

B̂T = ΘΘΘ
−1

ΓΓΓ, (10)

ĈT = ΦΦΦ
−1

ΨΨΨ, (11)

where ΘΘΘ = 1
K XHX, ΓΓΓ = 1

K XHYK , X = H�C, ΦΦΦ = 1
K ZHZ, ΨΨΨ =

1
K ZHΠΠΠYT , Z = H�B. Note that ΠΠΠ is a permutation matrix such
that Z = ΠΠΠ(B�H).

Given C and B, minimizing JK is equivalent to minimize

K

∑
k=1

∥∥∥vec(YT
k..)− (C�B)HT

k.)
∥∥∥2

2

(see [8] for detailed derivations). As a consequence, the estimation
of the local channel parameters is given by:

HT
k. = (C�B)†vec(YT

k..). (12)

C and B being global parameters, their estimation needs more
collaboration between the nodes. From the definition of the Khatri-
Rao product, we can write:

X =

 X1
...

XK

=

 Cdiag(H1.)
...

Cdiag(HK.)
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Hence, the matrices ΘΘΘ and ΓΓΓ can be obtained through averaging of
some local quantities:

ΘΘΘ =
1
K

K

∑
k=1

XH
k Xk, ΓΓΓ =

1
K

K

∑
k=1

XH
k Yk..

Similarly, we can write:

Z = H�B =


Z1
Z2
...

ZK

=

 Bdiag(H1.)
...

Bdiag(HK.)

 .

We get:

ΦΦΦ =
1
K

K

∑
k=1

ZH
k Zk, ΨΨΨ =

1
K

K

∑
k=1

ZH
k YT

k...

The computation of such averaged values in a network can be
achieved by using a consensus approach.

3.2 Average consensus in a network
In a consensus problem, a group of network nodes try to reach
agreement on a given quantity of interest that depends on their states
[9]. Consensus ensures that the action taken by any node in the net-
work is consistent with that of its neighbors. For example, suppose
that we need to compute the matrix ΩΩΩ as the average of the local

matrices Rk, i.e. ΩΩΩ = 1
K

K
∑

k=1
Rk. Average consensus can be reached

using a linear iteration scheme where each node repeatedly updates
its value as a weighted linear combination of its own value and those
of its neighbors:

ΩΩΩk(t +1) = wkkΩΩΩk(t)+ ∑
q∈Nk

wkqΩΩΩq(t), ΩΩΩk(0) = Rk.

Nk being the neighborhood of the kth node, i.e. nodes communi-
cating directly with k.

Several algorithms have been proposed in the literature based
on such a scheme. However, in the majority of the proposed algo-
rithms the weights wkq are chosen so that all the nodes asymptoti-

cally converge to the same value, i.e. lim
t→∞

ΩΩΩk(t) = ΩΩΩ = 1
K

K
∑

k=1
Rk,

that is achieved if the weight matrix W, with wkq as entries, is such
that limt→∞ Wt = 1

K JK .
It is now well known that, in the noiseless case1, consensus is

achieved if and only if the weight matrix has a simple eigenvalue at
1 and all other eigenvalues have magnitude strictly less than 1, the
left and right eigenvectors of W associated with the eigenvalue 1
being 1

K 1 and 1 [13]. The above conditions guarantee asymptotic
convergence.

In D-ALS, consensus are steps between ALS iterations. There-
fore, the consensus algorithm should be stopped after a finite num-
ber of iterations as done in [8]. Obviously, the number of consensus
iterations used in D-ALS impacts strongly the convergence of the
overall algorithm. In fact, asymptotic convergence is not suitable
in such a case. Even though, speed convergence of consensus algo-
rithm have been explored [13, 14] in order to derive fast consensus
algorithms. Errors due to running consensus algorithms in finite-
time are in general not quantifiable. Therefore, it is interesting to
address the question of exact consensus in finite-time.

A number of authors have studied finite-time consensus in the
framework of discrete-time systems. For example, in [15], it has
been shown that each node can calculate the consensus value as a
linear combination of its own past values over at most D time-steps,

1We restrict our study to perfect data exchanges in the network of receiv-
ing nodes.

D being the degree of the minimal polynomial of the associated
weight matrix. In [16], based on properties of de Bruijn’s graph and
block Kronecker product, it has been shown that the average con-
sensus problem can be reached in finite time if the number of nodes
is an exact power of the maximum in-degree of the graph. In this
paper, for time-invariant topologies, we show that the finite-time
average consensus problem can be solved as a matrix factorization
problem with joint diagonalizable matrices.

3.3 Finite time average consensus
Our goal is to find a set of matrices {Wi}i=1,··· ,D, with (i, j)th en-
tries equal to zero if j /∈Ni, so that

D

∏
i=1

Wi =
1
K

JK . (13)

Finding this set of matrices is equivalent to solve a multivariate
polynomial system of equations. In general, studying the existence
of solutions to such a system of equations can be untractable. How-
ever, by assuming that the matrices Wi are jointly diagonalizable;
i.e. it exists an orthogonal matrix U that diagonalizes the matrices
Wi, we get:

Wi = UEiU
T , UT U = IK

Ei being a diagonal matrix. We can therefore rewrite (13) as:

U

(
D

∏
i=1

Ei

)
UT =

1
K

JK . (14)

In the sequel, we define a set of matrices Wi jointly diagonaliz-
able so that solutions of equation (14) be tractable. Assuming that
Nmax = max{N1, · · · ,NK} is known, Ni being the cardinal of the
neighborhood of i, we define the matrix Ã = NmaxI−L, where L
denotes the Laplacian matrix of the graph:

L = [li j], li j =

{
Ni, if i = j
−1 if j ∈Ni
0 elsewhere

The Laplacian matrix is symmetric for undirected graphs. Its eigen-
values, λ1 ≤ λ2 ≤ ·· · ≤ λN , contain very significant information
about the topology of the graph G . In particular, we have λ1 = 0
with 1 as eigenvector. In addition, λ2 > 0, for a connected graph, is
called algebraic connectivity and plays a major role in the speed at
which information can diffuse in the network [9].

From the properties of the Laplacian matrix we can deduce that:
1. Ã is symmetric;
2. Its eigenvalues are Nmax− λi, where λi are the eigenvalues of

the Laplacian matrix. In particular Nmax is a simple eigenvalue.
3. The eigenvectors of the Laplacian matrix are also eigenvectors

of Ã. In particular 1 is the eigenvector associated with the
eigenvalue Nmax.

Denoting εi the eigenvalues of Ã, it is straightforward to show that
the set of matrices Wi = αiI+βÃ are jointly diagnalizable and:

UT WiU = Ei = diag(αi +βε1, · · · ,αi +βεN)

where U contains the eigenvectors of the Laplacian matrix. There-
fore

D

∏
i=1

Ei = diag(
D

∏
i=1

(αi +βε1), · · · ,
D

∏
i=1

(αi +βεN)) (15)

One can note that U being orthogonal, its first column is equal to
1√
K
1. We can then write:

1
K

JK = Udiag(1 0 · · ·0)UT (16)
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Since our goal is to solve (14), from (15) and (16) we get:
D
∏
i=1

(αi +βε1) = 1

D
∏
i=1

(αi +βεk) = 0, k = 2, · · · ,K
(17)

A solution to this problem is stated in the following theorem:

Theorem 1 Given a connected undirected graph associated with
the Laplacian matrix L, the set of matrices Wk = (αk +Nmaxβ )I−
βL,k = 1, · · · ,D, β 6= 0 allows reaching the average consensus in
D steps if:
1. D + 1 is the number of distinct eigenvalues of the Laplacian

matrix;
2. the parameters β and αi are respectively given by

β =
(

D+1
∏
i=2

λi

)−1/D

and αk = β (λk+1−Nmax), k = 1, · · · ,D,

with λi, i = 2, · · · ,D+1 the nonzero distinct eigenvalues of L.

Proof: The system of equations (17) to be solved can be rewritten
as follows:

D

∏
k=1

(αk +Nmaxβ ) = 1 (18)

D

∏
k=1

(αk +Nmaxβ −βλi) = 0, i = 2, · · · ,N (19)

One can note that the second equation above can be redundant
for non simple eigenvalues λi. Let D + 1 be the number of dis-

tinct eigenvalues. Therefore, we get D distinct equations
D
∏

k=1
(αk +

Nmaxβ −βλi) = 0, i = 2, · · · ,D+1. A solution parameterized by β

is given by: αk = β (λk+1−Nmax), k = 1, · · · ,D. Replacing these

expressions in (18), we get: β D
D
∏

k=1
λk+1 = 1. Hence the solutions

given above.�

3.4 D-ALS algorithm using finite time average consensus
In summary, the distributed decoding process is as follows:
1. ∀ k initialize Hk.(0) and Ck(0) = Ĉ with random values and

compute w j
kk = α j +(Nmax−Nk)β , j = 1, · · · ,D, using Theorem

1.
2. For i = 1,2, · · · ,

(a) At each node compute ΓΓΓk(0) = QH
k (i − 1)Yk..

and ΘΘΘk(0) = QH
k (i − 1)Qk(i − 1), where

Qk(i−1) = Ck(i−1)diag(Hk.(i−1)).
(b) Finite time average consensus: for j = 1, · · · ,D,

ΓΓΓk( j) = w j
kkΓΓΓk( j−1)+β ∑

q∈Nk

ΓΓΓq( j−1)

ΘΘΘk( j) = w j
kkΘΘΘk( j−1)+β ∑

q∈Nk

ΘΘΘq( j−1)

(c) Estimation of the encoded information matrix:
BT

k (i) = ΘΘΘ
−1
k (D)ΓΓΓk(D)

(d) At each node compute ΨΨΨk(0) = PH
k (i)YT

k.. and
ΦΦΦk(0) = PH

k (i)Pk(i), with Pk(i) = Bk(i)diag(Hk.(i−1)).
(e) Finite time average consensus: for j = 1, · · · ,D:

ΨΨΨk( j) = w j
kkΨΨΨk( j−1)+β ∑

q∈Nk

ΨΨΨq( j−1)

ΦΦΦk( j) = w j
kkΦΦΦk( j−1)+β ∑

q∈Nk

ΦΦΦq( j−1)

(f) Estimation of the code matrix: CT
k (i) = ΦΦΦ

−1
k (D)ΨΨΨk(D).

(g) Estimation of local channel parameters as
HT

k.(i) = (Ck(i)�Bk(i))†vec(YT
k..).

(h) After convergence B̂ = Bk(i), ∀k, then the destination node
decodes the information matrix: Ŝ = (AHA)−1AHB̂T .

4. SIMULATION RESULTS

In this section, we present some results corresponding a transmis-
sion/reception scenario where the source node collaborates with
three other nodes, while the destination node collaborates with
seven nodes. The virtual multi-antenna system has four transmit-
ting antennas (nodes) and eight receiving ones. Thus, the parame-
ters of the overall tensor model were K = 8, L = 4, T = 250, and
N = 4. The considered graph topology at the receiver front-end was
a circle. The informative symbols were randomly generated from
a BPSK alphabet. The columns of the matrix C were randomly
generated.

We compared the D-ALS algorithm with finite time consen-
sus, named DALS/FTC, with the version derived in [8] and also
with the centralized scheme where the destination node receive
the tensor slices of the nodes in the network before computing
the CP decomposition. For D-ALS, the weight were computed
using the uniform scheme [17]. According to Theorem 1, the
weights of the finite-time average consensus were computed us-
ing the 4 distinct nonzero eigenvalues of the Laplacian matrix
{0.5858; 2; 3.4142; 4}. Therefore finite-time average consensus
is achieved in 4 steps.

The results below are averaged values over 100 independent
Monte-Carlo runs. At each Monte Carlo run, the columns of C
(amplification factors) were randomly drawn from a uniform distri-
bution U [1;5].

The performance is evaluated according to the normalized mean
square error (NMSE) at the destination node, i.e.:

NMSE =

∥∥YK..− ĈKdiag(ĤK.)B̂T
K
∥∥2

F

‖YK..‖2
F

and according to the bit error rate (BER).
As expected, the results obtained with the centralized scheme

are strictly equal to those obtained with the DALS/FTC algorithm.
Therefore we just give the comparison results between D-ALS and
DALS/FTC. Figures 1 and 2 depict the NMSE in the noiseless case
and for an additive white Gaussian noise (SNR=36 dB). Recall
that we consider the communication inside a cluster of transmitting
or receiving nodes are perfect. The additive noise only concerns
inter-cluster communications. We can note that for both noiseless
and noisy cases, for the same number of consensus iterations, the
DALS/FTC gives better results than D-ALS. This is an expected
result since D-ALS makes use of approximate values compared to
exact values for DALS/FTC. The performance of D-ALS are im-
proved when increasing the number of consensus iterations. Figure
3 depicts the decoding performance in terms of BER. We also note
the same behavior as above.

5. CONCLUSION

In this paper, we have extended the Khatri-Rao Space time coding
method proposed in [7] to cooperative networks. For cooperating
nodes having a single antenna, these nodes constitute a virtual an-
tenna array at both transmitting and receiving front-end. At each
node, the received data can be viewed as slices of a third-order ten-
sor. Therefore, retrieving the informative data is achieved by means
of a CP tensor decomposition using an Alternating Least Squares
(ALS) algorithm for example. When all the slices cannot be gath-
ered at the same node, for storage resources limitations for example,
a distributed ALS method can be used as in [8], which is an aver-
age consensus based method. Instead of using a standard consen-
sus method where convergence is achieved asymptotically, we have
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Figure 2: Comparison of D-ALS based on asymptotic and finite-
time average consensus in terms of NMSE: Noiseless case.
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Figure 3: Comparison of D-ALS based on asymptotic and finite-
time average consensus in terms of NMSE: Noisy case (SNR=36
dB)
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Figure 4: Comparison of D-ALS based on asymptotic and finite-
time average consensus in terms of BER.

proposed a finite time average consensus approach that relies on the
knowledge of the graph topology. Future works include the evalu-
ation of the impact of imperfect data exchange or asynchronism. A
deeper convergence analysis should also be addressed.
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