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Abstract—Energy-efficient link adaptation is studied for trans-
mission on a parallel channel. The total power dissipation
model includes circuit power and a power amplifier inefficiency
parameter. Earlier results are derived in various ways based
on convex minimization problems and concave maximization
problems, respectively. It is shown that the fixed-point algorithm
proposed earlier by the authors is equivalent to the Dinkelbach
method for solving nonlinear fractional programs.

I. INTRODUCTION

Energy efficiency in mobile communication devices is be-
coming more and more important because of the increasing
gap between power consumption of signal processing circuits
and battery capacity. Improved energy efficiency involves
minimizing the energy consumption per bit [1] or equivalently
maximizing a “throughput per Joule” metric [2]. Previous
work on optimization of energy efficiency during transmission
has modeled the power dissipated in a mobile terminal during
transmission as the sum of a constant power dissipation in the
processing circuit and the transmission power divided by the
power amplifier drain efficiency.

Energy-efficient link adaptation for parallel channels is
an important problem, since both frequency-selective, block
fading channels [3] and MIMO channels (via singular value
decomposition [4]) can be described with this model.

In this paper, we develop our previous results on energy-
efficient link adaptation for parallel channels in [5]. The main
results from that paper are derived with the aid of transformed
problems that are concave in the case of maximization and
convex in the case of minimization, respectively. Thus, the
optimum is guaranteed to be global. Furthermore, it is shown
that the algorithm proposed in [5] is equivalent to the Dinkel-
bach method for solving nonlinear fractional programs.

The paper is organized as follows. In Section II, the energy
efficiency is maximized over power based on the transfor-
mation to a concave program. In Section III, the inverse
problem of minimizing energy consumption per bit over rate
is considered. In Section IV, the equivalent results of these
two optimization problems form the basis of a fixed-point
algorithm that is shown to be equivalent to the Dinkelbach
method in Section V. Section VI concludes the paper.

II. MAXIMIZING THE ENERGY EFFICIENCY

Consider a parallel AWGN channel consisting of a set of
K non-interfering subcarriers, where the noise is indepen-
dent across subcarriers. Assuming that perfect channel state

information is available at both transmitter and receiver, the
maximum rate (in bits/s) that can be reliably transmitted over
each subcarrier is

ri = W log2(1 + γipi), i = 1, . . . ,K, (1)

where W denotes the subcarrier spacing, pi is the transmit
power spectral density of subcarrier i, and γi is the channel
to noise ratio (CNR) of subcarrier i, given by

γi =
|hi|2

N0
,

where |hi|2 denotes the subcarrier power gain and N0 is the
noise power spectral density.

Efficiency in general is utility divided by cost. In the
case of energy efficiency, the utility is the amount of data
transferred and the cost is the amount of energy needed for
the transmission. Since the energy efficiency (EE) can be
calculated as sum rate over total power dissipation, we have
the optimization problem

maximize
p∈RK

+

EE(p) =
∑K

i=1 W ·ri(pi)

PC+ε
∑K

i=1 W ·pi
, (2)

where PC is the circuit power dissipation, and ε is a parameter
that expresses power amplifier inefficiency. For simplicity, PC

is assumed to be constant. Since the numerator is concave and
the denominator affine (hence convex) in p, this is a strictly
quasiconcave maximization problem.

To simplify the mathematical analysis, we express the sum
rate in nats/s and introduce the parameter

µ =
PC

εW

that expresses the relative weight of the terms in the cost
function. Thus, the problem to be solved is

maximize
p∈RK

+

q(p) = 1Tρ(p)
µ+1Tp

, (3)

where
ρi = ln(1 + γipi), i = 1, . . . ,K.

Note that EE in (2) is related to q by

EE =
q

ε ln 2

and that
ri =

W

ln 2
· ρi.
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A. Transformation to a concave problem

By the transformation

t = 1/(µ+ 1Tp), y = p/(µ+ 1Tp), y ∈ RK
+ , t > 0,

we obtain the concave maximization problem [6]

maximize
y∈RK

+ ,t>0
q(y/t) = t1Tρ(y/t)

subject to µt+ 1Ty = 1,
(4)

where ρi = ln
(
1 + γi · yi

t

)
and the parameter t corresponds to

the inverse of the total power dissipation. The problem above
is concave since the perspective function in the objective pre-
serves concavity and the equality constraint is affine. By fixing
the value of t, we see that the problem of maximizing the
energy efficiency in a multi-carrier system is closely related to
that of maximizing the sum rate for a given total transmission
power allocated to a set of communication channels. It is well
known that this problem has an analytical solution given by
water-filling of transmission power, see Appendix for details.

B. Mathematical analysis

Since the objective function in (4) is concave and contin-
uously differentiable and the equality constraint function is
affine, the KKT conditions are both necessary and sufficient
for optimality. After the introduction of a Lagrange multiplier
ν ∈ R for the equality constraint, the Lagrangian is

L(y, t, ν) = t1Tρ(y/t)− ν(µt+ 1Ty − 1),

hence the KKT conditions are

µt∗ + 1Ty∗ = 1,

t∗ · ∂ρi(y
∗/t∗)

∂yi
− ν∗ = 0, i = 1, . . . ,K,

1Tρ(y∗/t∗) + t∗
K∑
i=1

∂ρi(y
∗/t∗)

∂t
− ν∗ · µ = 0,

with

∂ρi
∂yi

=
1
t

1
γi

+ yi

t

∂ρi
∂t

= −yi
t
· ∂ρi
∂yi

.

From the second KKT condition,

ν∗ =
1

1
γi

+
y∗
i

t∗

, i = 1, . . . ,K.

Solving for y∗i yields

y∗i = t∗
(

1

ν∗
− 1

γi

)
, i = 1, . . . ,K.

If 1
γi

> 1
ν∗ε ln 2 , the resulting y∗i would be negative, so in this

case y∗i = 0. Thus, we have the optimal power allocation

p∗i =
y∗i
t∗

=

[
1

ν∗
− 1

γi

]+
,

which is water-filling with a cutoff CNR equal to ν. The
corresponding optimal rate allocation can be calculated from

ρ∗i =

[
ln

1

ν∗
− ln

1

γi

]+
, i = 1, . . . ,K.

Since the unknowns can be calculated as functions of ν, the
problem reduces to finding ν∗ from the last KKT condition,

ν∗ · µ = 1Tρ(y∗/t∗)− t∗
K∑
i=1

y∗i
t∗

∂ρi
∂y∗i

.

Combining this with the second KKT condition, we have

ν∗ · µ = 1Tρ(y∗/t∗)−
K∑
i=1

y∗i
t∗
· ν∗,

or

ν∗ =
1Tρ(y∗/t∗)

µ+ 1Ty∗/t∗
= t∗1Tρ(y∗/t∗) = q(y∗/t∗),

since µ + 1Ty∗/t∗ = 1/t∗. Thus, at the optimum point the
Lagrange multiplier ν is equal to q.

III. MINIMIZING THE ENERGY CONSUMPTION PER BIT

Since the numerator and denominator in problem (3) are
both positive, equivalently the inverse can be minimized.

Solving (1) for pi, we get

pi =
2ri/W − 1

γi
, i = 1, . . . ,K, (5)

which is convex and continuously differentiable in ri. For
energy-efficient communication, we wish to minimize the cost
function energy consumption per bit (denoted Ea), corre-
sponding to the dissipated power divided by the throughput,
thus the problem to be solved can be stated as

minimize
r∈RK

+

Ea(r) =
PC+ε1Tp(r)

1T r
, (6)

where pi(ri) is given by (5).
With the same simplifications as in the maximization case,

we get

minimize
ρ∈RK

+

1
q(ρ) =

µ+1Tp(ρ)
1Tρ

, (7)

where

pi =
eρi − 1

γi
, i = 1, . . . ,K.

Note that the energy consumption per bit Ea can be calculated
from

Ea =
1

EE
=

ε ln 2

q
.
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A. Perspective transformation

The optimization problem (7) is a convex-concave fractional
problem with an affine denominator [7],

minimize
x

f0(x)/(c
Tx+ d)

subject to fi(x) ≤ 0, i = 1, . . . ,m
Ax = b,

where f0, f1, . . . , fm are convex, and the domain of the
objective function is defined as {x ∈ domf0|cTx+ d > 0}.
It can be shown that this problem is strictly quasiconvex [8].
By the one-to-one variable transformation

y = x/(cTx+ d), t = 1/(cTx+ d), y ∈ RK
+ , t > 0

the problem above becomes

minimize
y,t

tf0(y/t)

subject to tfi(y/t) ≤ 0, i = 1, . . . ,m
Ay = bt
cTy + dt = 1,

where tf0(y/t) is called the perspective of f0. This problem
is convex since the perspective operation conserves convexity
and the equality constraint is affine.

Applying the variable transformation above to problem (7),
we obtain

minimize
y∈RK

+ ,t>0
µt+ t1Tp(y/t)

subject to 1Ty = 1,
(8)

where

pi(yi/t) =
eyi/t − 1

γi
, i = 1, . . . ,K.

For this particular problem, t corresponds to the inverse sum
rate (which can be interpreted as the average nat transmission
time), and y corresponds to a normalized rate vector with the
fractional distribution of the rates.

B. Mathematical Analysis

Since the objective function in problem (8) is a continuously
differentiable convex function and the equality constraint is an
affine function, the Karush-Kuhn-Tucker (KKT) conditions are
both necessary and sufficient for optimality. After introduction
of a Lagrange multiplier νr ∈ R for the equality constraint,
the Lagrangian is

L(y, t, νr) = µt+ t1Tp(y/t) + νr(1− 1Ty),

hence the KKT conditions are

1− 1Ty∗ = 0

t∗
∂pi
∂y∗i
− ν∗r = 0, i = 1, . . . ,K,

µ+ 1Tp(y∗/t∗) + t∗
K∑
i=1

∂pi
∂t∗

= 0,

with

∂pi
∂yi

=
eyi/t

tγi
∂pi
∂t

= −yi
t
· ∂pi
∂yi

.

The second KKT condition yields

ν∗r = t∗
∂pi
∂y∗i

=
ey

∗
i /t

∗

γi
, i = 1, . . . ,K.

Solving for y∗i , we get

y∗i = t∗
(
ln ν∗r − ln

1

γi

)
, i = 1, . . . ,K.

If 1
γi

> ν∗r , the resulting y∗i would be negative, so in this case
y∗i = 0. Thus, we have the optimal rate allocation

ρ∗i =
y∗i
t∗

=

[
ln ν∗r − ln

1

γi

]+
,

with the corresponding subcarrier power allocations

p∗i =

[
ν∗r −

1

γi

]+
, i = 1, . . . ,K.

These expressions are identical to the ones obtained through
maximizing the energy efficiency with ν∗ = 1/ν∗r .

Since all unknowns have been expressed as explicit func-
tions of ν∗r , the problem reduces to finding ν∗r from the last
KKT condition,

µ+ 1Tp(y∗/t∗) + t∗
K∑
i=1

(
−y∗i
t∗

)
· ∂pi
∂y∗i

= 0.

Combining this with the second KKT condition, we have

µ+ 1Tp(y∗/t∗)− ν∗r ·
1Ty∗

t∗
= 0,

which leads to the result

ν∗r =
t∗(µ+ 1Tp(y∗/t∗))

1Ty∗ ,

or, since 1Ty = 1,

ν∗r = t∗(µ+ 1Tp(y∗/t∗)) = E∗
a.

That is, at the optimum point we have νr = Ea.

IV. NUMERICAL SOLUTION ALGORITHM

Summarizing the results from the mathematical analysis
of the two equivalent problem formulations, the necessary
and sufficient KKT conditions result in the following set of
equations at an optimal point (remember that ν = 1/νr):

ρ∗i =

[
ln

1

ν∗
− ln

1

γi

]+
, i = 1, . . . ,K (9)

p∗i =

[
1

ν∗
− 1

γi

]+
, i = 1, . . . ,K (10)

ν∗ =
1Tρ∗

µ+ 1Tp∗ (11)
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Require: q0 satisfying F (q0) ≥ 0, tolerance ∆
n← 0
repeat

Solve problem (12) with q = qn to obtain x∗
n

qn+1 ← f(x∗
n)

g(x∗
n)

n← n+ 1
until |F (qn)| ≤ ∆

Fig. 1. The Dinkelbach method.

This set of nonlinear equations is difficult to solve explicitly.
Therefore, in [5] we proposed the following fixed-point algo-
rithm exhibiting superlinear convergence rate:

given initial value ν0, tolerance ∆
repeat
1) Use νn to calculate new values for ρi and pi,

i = 1, . . . ,K
2) Use these values to compute νn+1

3) n := n+ 1

until |νn − νn−1| ≤ ∆

V. COMPARISON WITH THE DINKELBACH METHOD

A concave-convex fractional program

maximize
x∈S

q(x) = f(x)
g(x) ,

can also be associated with a parametric concave program [10],
[11],

maximize
x∈S

f(x)− qg(x), (12)

where q ∈ R is treated as a parameter. The problem above
might be mathematically more tractable than a concave-convex
fractional program since it is concave.

Let x∗ be an optimal point in problem (12). The optimal
value of the objective function,

F (q) = f(x∗)− qg(x∗),

is a convex, continuous, and strictly decreasing function of q
[10]. Moreover, let the optimal value of the objective function
in the concave-convex fractional program be denoted by q∗.
Then the following statements are equivalent:

F (q) > 0⇔ q < q∗

F (q) = 0⇔ q = q∗

F (q) < 0⇔ q > q∗

Thus, solving the concave-convex fractional program is equiv-
alent to finding the root of the nonlinear equation F (q) = 0.

The algorithm described in Fig. 1, known as the Dinkelbach
method [10], can be used to find this root. The algorithm is
in fact the application of Newton’s method to a nonlinear
fractional program [11]. Therefore, the sequence converges
to the optimal point with a superlinear convergence rate. A
detailed convergence analysis can be found in [12]. The initial
point can be any q0 = f(x̃)

g(x̃) with a feasible x̃ that satisfies
F (q0) ≥ 0.

For problem (3), the corresponding parametric concave
optimization problem is

maximize
p∈RK

+

1Tρ(p)− q(µ+ 1Tp), (13)

where
ρi = ln(1 + γipi), i = 1, . . . ,K

and q ∈ R is a given parameter.
Problem (13) needs to be solved in each step of Dinkel-

bach’s algorithm. Since it is obvious that a strictly feasible
point exists for problem (13), strong duality holds according
to Slater’s condition [9] and the Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient for optimality. The
stationarity condition (obtained by setting the derivative with
respect to pi equal to zero) is

γi
1 + γip∗i

− q = 0, i = 1, . . . ,K.

Solving this equation for p∗i , we get

p∗i =
1

q
− 1

γi
, i = 1, . . . ,K.

Since the transmit power must be nonnegative, we have

p∗i =

[
1

q
− 1

γi

]+
, i = 1, . . . ,K.

The corresponding optimal rate adaptation is given by

ρi =

[
ln

1

q
− ln

1

γi

]+
, i = 1, . . . ,K.

Comparing these results with the algorithm proposed in [5],
we see that the two numerical methods are equivalent with the
parameter q corresponding to ν.

VI. CONCLUSION

We have seen that the results in [5] can be derived in a
number of ways based on concave maximization problems or
convex minimization problems, respectively. The fixed-point
algorithm turns out to be equivalent to the Dinkelbach method
for solving concave-convex fractional programs. For detailed
convergence properties of the algorithm, the reader is referred
to [12].

APPENDIX A
WATER-FILLING POWER ALLOCATION

Find the subcarrier power allocation pi that maximizes the
capacity under a total power constraint

∑K
i=1 pi ≤ P̂ :

minimize
p∈RK

+

−
∑K

i=1 ri(pi)

subject to
∑K

i=1 pi ≤ P̂

Since the objective and the inequality constraint func-
tions are convex and continuously differentiable, the KKT
conditions are both necessary and sufficient for optimality.

877



Introducing a Lagrange multiplier λ ∈ R for the inequality
constraint, the Lagrangian is

L(p, λ) = −
K∑
i=1

ri(pi) + λ

(
K∑
i=1

pi − P̂

)
,

hence the KKT conditions (primal feasibility, dual feasibility,
complementary slackness and stationarity) are

K∑
i=1

p∗i − P̂ ≤ 0,

λ∗ ≥ 0,

λ∗

(
K∑
i=1

p∗i − P̂

)
= 0,

− dri
dp∗i

+ λ∗ = 0, i = 1, . . . ,K,

respectively. Since ri(pi) is monotonically increasing, the last
row has no solution if λ∗ = 0, so λ∗ has to be strictly greater
than 0. Thus, the complementary slackness condition implies∑K

i=1 p
∗
i − P̂ = 0, so the total power constraint is always

active.
Inserting the expression for ri(pi) from (1) we obtain

− W

ln 2
·

γi

W

1 +
γip∗

i

W

+ λ∗ = 0, i = 1, . . . ,K.

Rearranging yields

p∗i = W

(
1

λ∗ ln 2
− 1

γi

)
, i = 1, . . . ,K.

If 1
γi

> 1
λ∗ ln 2 , the resulting p∗i would be negative, so in this

case p∗i = 0. Thus, we have the optimal power allocation

p∗i = W ·
[

1

λ∗ ln 2
− 1

γi

]+
, i = 1, . . . ,K,

with λ chosen such that the total power constraint is met with
equality,

W
K∑
i=1

[
1

λ∗ ln 2
− 1

γi

]+
= P̂ .

The sum on the lefthand side is a piecewise-linear increasing
function of 1

λ∗ ln 2 , with breakpoints at 1
γi

, so the equation has
a unique solution.

The values 1
γi

plotted as a function of the subcarrier index
i can be thought of as tracing out the bottom of a vessel. If P̂
units of water are filled into the vessel, the amount of water
in subcarrier i is the power allocated to that subcarrier and

1
λ∗ ln 2 is the water level.
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