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ABSTRACT
Automated selection of the regularization parameter for

Total Variation restoration has shown to give very accurate
reconstruction results. Most of the literature is devoted to the
`2-TV case (images corrupted with Gaussian noise), whereas
for the `1-TV case (images corrupted with salt-and-pepper
noise) there are only a couple of published algorithms.

In this paper we present a computationally efficient al-
gorithm for `1-TV denoising of grayscale and color im-
ages, which spatially adapts its regularization parameter.
The proposed algorithm, which is based on the Iteratively
Reweighted Norm algorithm, uses an adaptive median fil-
ter to initially estimate the outliers of the noisy (observed)
image, and then proceeds to solve the `1-TV problem only
for the noisy pixels while spatially adapts the regularization
parameter based on local statistics. The experimental results
show that the proposed method yields impressive results even
when 90% of the image pixels are corrupted.

1. INTRODUCTION

Image denoising is a fundamental problem that consists in
estimating the noise-free image from its corrupted (observed)
version. Within the Total Variation (TV) framework, the salt-
and-pepper noise model have been widely studied [1, 2, 3].
The `1-TV problem (as is commonly refered) has attracted
considerable interest from the algorithmic point of view ([2,
3, 4, 5, 6, 7, 8] among others) due to the challenging nature
of the cost functional it needs to minimize:

min
u

T (u) =

∥∥∥∥∥u−b
∥∥∥∥∥

1
+λ

∥∥∥∥∥√∑
n∈C

(Dxun)2 + (Dyun)2
∥∥∥∥∥

1
, (1)

where both the fidelity (‖u − b‖1) and regularization

(‖
√∑

n∈C (Dxun)2 + (Dyun)2‖1) terms use the `1 norm and un

represents each channel of u. We note that if C = {1}, then b
represents a grayscale noisy image; whereas if C = {1,2,3},
then b represents a color noisy image and un each channel
of u and λ ∈ R, λ > 0 represents the (global) regularization
parameter.

The original `1-TV problem (1) features a single regular-
ization parameter (λ), which influences the entire pixel set
and has a direct impact on the quality of the reconstructed
data. Ideally, for the salt-and-pepper noise model, noise-free
pixels should preserve their values. However, the use of a
global parameter forces the entire pixel set to be penalized,
which results in an innacurate reconstruction. Typically, this
parameter is manually selected in order to try to obtain the
best possible reconstruction quality, based on a specific met-
ric.

To the best of our knowledge, [9, 10] are the only pub-
lished papers that tackle the above mentioned shortcomings
for the `1-TV problem (for methods that adapt the regulariza-
tion parameter for the `2-TV problem, we refer the reader to
[11, 12, 13] and references therein). Whereas in [9], the orig-
inal `1-TV problem is applied only on a set of corrupted-pixel
candidates, which is estimated via an adaptive median filter.
Here, the regularization parameter is manually selected. In
[10] a scheme is proposed to spatially adapt the regulariza-
tion parameter based only on local statistics and noise level
estimation. Nevertheless, all pixels are still regularized.

In this paper we propose to combine two key ideas pre-
sented in [9, 10]: (i) find an estimate of the corrupted-pixel
set, and (ii) automatically select and adapt the regulariza-
tion based on local statistics. We stress that while in [9] a
slightly modified `1-TV problem (as originally described in
[2]) is actually solved, and in [10] the authors propose an uni-
fied Moreau-Yosida ([14, 15]) based primal-dual algorithm
to solve (1), we propose to solve the modified `1-TV prob-
lem:

min
u

T (u) =

∥∥∥∥∥Λ−1(u−b)
∥∥∥∥∥

1
+

∥∥∥∥∥√∑
n∈C

(Dxun)2 + (Dyun)2
∥∥∥∥∥

1
,

(2)
by using the proposed algorithm, which is based on the It-
eratively Reweighted Norm algorithm [7, 8]. In this equa-
tion, Λ is a diagonal matrix that represents the set of local
regularization parameters. Note that if Λ = diag(λ), then (2)
is equivalent to (1). The value of each element of Λ is au-
tomatically chosen via an iterative scheme based on noise-
corrupted pixel candidates. Initial parameter values are de-
fined based on a local noise level estimation. Then, local
statistical information about the residual image is iteratively
used to spatially adapt them. This approach requires no in-
formation about the noise-free image.

2. PRELIMINARY REMARKS

2.1 Technicalities
We represent 2-dimensional images by 1-dimensional vec-
tors: un (n ∈ C) is a 1-dimensional (column) or 1D vector
that represents a 2D grayscale image obtained via any order-
ing (although the most reasonable choices are row-major or
column-major) of the image pixels. For C = {1,2,3} we have
that u = [(u1)T (u2)T (u3)T ]T is a 1D (column) vector that rep-
resents a 2D color image.

The term 1
q

∥∥∥∥∥√∑
n∈C

(Dxun)2 + (Dyun)2
∥∥∥∥∥q

q
in (2) is the

generalization of TV regularization to color images (n ∈
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C = {1,2,3}) with coupled channels (see [16, Section 9],
also used in [17] among others), where we note that√∑

n∈C

(Dxun)2 + (Dyun)2 is the discretization of |∇u| for cou-

pled channels (see [17, eq. (3)]), and Dx and Dy represent
horizontal and vertical discrete derivative operators respec-
tively.

2.2 Salt-and-pepper Noise Model

An observed vector-valued image with L channels b and el-
ements bn (n ∈ C) corrupted with salt-and-pepper noise is
characterized by

bn(k) =


vmin, with probability p1

vmax, with probability p2

u∗n(k), with probability 1− p1− p2

(3)

where u∗n(k) describes a pixel in the noise-free image u∗ and
p = p1 + p2 represents the noise level.

2.3 Previous Related work

2.3.1 `1-TV methods based on local regularization param-
eters

In [9], pixel neighborhoods in the image of interest are an-
alyzed to estimate the noise-corrupted pixel set N . This re-
gions are defined as:

sn(l,k) = bn(k), k ∈ Kwl
n
(l), (4)

where Kwl
n
(l) is the pixel set included in a (2 ·wl

n + 1)× (2 ·
wl

n + 1) window centered at l, which is the pixel of inter-
est. If wl

n is not large enough to correctly analyze the pixel’s
condition, it is increased and the analysis is repeated. This
procedure is part of an adaptive median filter algorithm (see
[9, Algorithm 1]), which applies the slightly modified `1-
TV problem described in [2] only on N by using a smooth
approximation of the `1 norm, along with an artificial time
marching scheme. The regularization parameter is manually
selected. Although the quality of the reconstructed images
is very good, the computational performance of the resulting
algorithm is rather poor.

In [10] the authors propose an unified Moreau-Yosida
[14, 15] based primal-dual algorithm to solve (1) for vector-
valued images (the resulting algorithm is also capable of
solving the `2-TV problem), by employing an estimate of
the noise level p (see (3)) along with some initial guess to
spatially adapt the regularization parameter based on a local
noise estimator of the residual image. A window of fixed
(arbitrary) size w (equal to eight pixels using the current no-
tation) is used for such purpose. The reconstructed (color)
images shows evident visual artifacts.

2.3.2 Iteratively Reweighted Norm (IRN) Algorithm

The IRN algorithm [7, 8] is a computationally efficient and
flexible method that can handle the norms p > 0 and q ≤ 2
in the regularization and fidelity terms respectively, includ-
ing the `2-TV and `1-TV for grayscale and color images as
special cases by representing the `p and `q norms by their

equivalent weighted `2 norms. This iterative problem is ex-
pressed as:

min
u

T (k)(u) =
1
2

∥∥∥∥∥W(k)
F

1/2
(u−b)

∥∥∥∥∥2

2
+
λ

2

∥∥∥∥∥W(k)
R

1/2
Du

∥∥∥∥∥2

2
, (5)

and it converges to the solution of (1), where W(k)
F =

diag
(
τF,εF (u(k)−b)

)
and

D = IL ⊗ [DxT DyT ]T W(k)
R = I2L ⊗Ω(k), (6)

Ω(k) = diag

τR,εR

∑
n∈C

(Dxu(k)
n )2 + (Dyu(k)

n )2

 , (7)

where IL is an L×L identity matrix, ⊗ is the Kronecker prod-
uct, C = {1}, L = 1 or C = {1,2,3},L = 3. Following a common
strategy in IRLS type algorithms, the functions τF,εF (x) and
τR,εR (x) are defined to avoid numerical problems (see [7, eqs.
(5) and (12)]) when u(k) −b or

∑
n∈C

(Dxu(k)
n )2 + (Dyu(k)

n )2 has

zero-valued components.

3. SPATIALLY ADAPTIVE IRN ALGORITHM

In this section, we describe how to use the IRN algorithm to
solve (2). Then, a summary of the noise-corrupted pixel set
estimation and parameter update strategy is presented. Fi-
nally, the spatially adaptive IRN algorithm is listed.

3.1 Derivation
It is straighforward to check that if Λ is fixed we can use
the IRN algorithm to solve (2). The equivalent weighted `2

version of the modified `1-TV problem can be written as:

min
u

T (k)(u) =
1
2

∥∥∥∥∥W(k)
F

1/2
Λ(k)−1/2

(u−b)
∥∥∥∥∥2

2
+

1
2

∥∥∥∥∥W(k)
R

1/2
Du

∥∥∥∥∥2

2
,

(8)
where Λ(k) > 0 is a diagonal matrix defined in some fash-
ion. Since (8) is quadratic and its Hessian ∇2T (k)(u) =(
W(k)

F Λ(k)−1
+ DT W(k)

R D
)

is greater than zero, then the mini-
mum of (2) can be reached by iteratively solving(

W(k)
F Λ(k)−1

+ DT W(k)
R D

)
u = W(k)

F Λ(k)−1b. (9)

Finally, we mention that although (9) is mathematically cor-
rect, from a numerical point of view it is better to solve(

I +Λ(k)W(k)
F
−1 (

DT W(k)
R D

))
u = b. (10)

since it was found to result in a large reduction in the re-
quired number of CG iterations [7]. In Algorithm 1 we list
our resulting method.

3.2 Corrupted Pixel Candidate Selection
The salt-and-pepper noise detector based on the adaptive me-
dian filter applied in [9, Algorithm 1] is succinctly described.
The set of noise-corrupted pixels of the observed image b
with L channels is defined by:

N : {n ∈C, l ∈Ω : b̂wl
n

n (l) , bn(l)∧bn(l) ∈ {vmin, vmax}}, (11)
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where b̂wl
n

n (l) is the output of the Ranked Over Based Adap-
tive (RAMF) Filter [18]. This filter analyzes a (2 ·wl

n +1)×(2 ·
wl

n +1) neighborhood centered at l in order to define whether
this pixel is noise-corrupted or not. the neighborhood size is
increased if the median of the neighborhood is equal to its
minimum or maximun value, and the procedure is repeated
until it reaches a maximum size wmax. Then, l is defined as
a noise-corrupted pixel if it is equal to the maximum or min-
imum value in the neighborhood, in which case is replaced
by the neighborhood’s median.

In [9], manually selected values for wmax are applied de-
pending on the noise level. Heuristically, we have deter-
mined that wmax = 9 gives a good compromise between speed
and reconstruction quality. wl

n initial size is 1 for all l.
The proposed algorithm defines the set W, which is zero

if the element l is noise-free and wl
n if it is noisy. This

gives information about the local noise level for each noise-
corrupted pixel. Note that the global noise level p (see (3))
can be estimated as p̃ = 1

N
∑

I[W,0], where N is the number
of pixels and I is the indicator function.

3.3 Parameter Update
In [10] an estimation of local statistics for a fixed, manually
selected neighborhood size is applied in order to give an ed-
ucated guess about the noise level of the residual (r = u−b)
along with a sophisticated rule [10, eq. (3.2)] to spatially
update the regularization parameters. For the spatially adap-
tive IRN algorithm, we also make use of local statistics of
the residual, but based on particular neighborhood sizes (see
section 3.2).

We define the local noise estimator as:

p̂n(l) =
1
M

∑
k∈K

wl
n

(l)

|rn(l)| (12)

where M = (2 · wl
n + 1)2 and Kwl

n
(l) is defined as in (4).

The spatially dependant regularization parameter Λ is ini-
tialized as Λ(0) = diag(λ(0)), with λ(0)(l) = diag(I[wl

n(l)>0]) +

10−6 diag(I[wl
n(l)==0]). After solving (2) via (10), we compute

p̂n(l) in order to obtain the regularization parameter updates
λ(m)

n (l) in a spatially dependant fashion:

λ(m)
n (l) =

ρ−1 ·λ(m−1)
n (l) if p̂n(l) < p̃ ·σ

ρ ·λ(m−1)
n (l) if p̂n(l) > p̃ ·σ

, (13)

where ρ,σ are constant values and p̃ is the estimated
global noise level. Heuristically, we have found that ρ ∈
[0.65, 0.95],σ ∈ [0.25, 0.5] gives good reconstruction results
with just a few iterations (outer-loops in algorithm 1).

4. EXPERIMENTAL RESULTS

We compare the spatially adaptive IRN algorithm with the
results reported for Algorithm III proposed in [9], which
here is refered as CHN, and with the (standard) IRN algo-
rithm [7, 8]. The test images consists of Lena (grayscale
and color), Bridge (grayscale), and Goldhill (color). They
are shown in Fig. 1 (except grayscale Lena). The test im-
ages were corrupted with a variable noise level: from 10%
to 90%, with steps of 20%, which matches the experimental

Algorithm 1 Spatially Adaptive IRN algorithm for `1-TV
Initialize

Estimate set W from b
Λ(0) = diag(I[wl

n(l)>0]) + 10−6 diag(I[wl
n(l)==0])

u(0,0) =
(
I +Λ(0)DT D

)−1
b

for m = 0,1, ..,M

for k = 1,2, ..,K
W(k)

F = diag
(
τF,εF (u(m,k−1)−b)

)
Ω

(k)
R = diag

(
τR,εR

(
(Dxu(m,k−1))2 + (Dyu(m,k−1))2

))
W(k)

R =

(
Ω

(k)
R 0
0 Ω

(k)
R

)
u(m,k)=

(
I +Λ(m)W(k)

F
−1

DT W(k)
R D

)
b

end
r = u(m,K)−b
estimate p̂ (via (12))
compute Λ(m+1) (via (13))

end m = 0,1, ...

setup in [9]. The quality metrics employed for evaluating the
spatially adaptive IRN algorithm are: SNR= 10log10

Nσ2{u∗}
‖u−u∗‖22

,

PSNR= 10log10
N(max {u})2

‖u−u∗‖22
, and SSIM [19], where N repre-

sents the number of elements contained in the image entire
channel set. All simulations have been carried out using
Matlab-only code on a 3GHz Intel core i7 CPU (L2: 1024K,
RAM: 4G). Results corresponding to the IRN and the spa-
tially adaptive IRN algorithm presented here may be repro-
duced using the the NUMIPAD (v. 0.30) distribution [20], an
implementation of IRN and related algorithms.

(a) (b) (c)

Figure 1: Test image set: (a) color Lena (512x512 px.). (b)
Bridge (720x576 px.). (c) Goldhill (512x512 px.).

For all experiments we use wmax = 9 (see section 3.2),
and ρ = 0.65 and σ = 0.5 (see (13)) Also, we use five outer-
loops with eight inner-loops (M = 5 and K = 8 in Algorithm
1), which seems to be a good compromise between the com-
putational cost and the reconstruction quality.

As expected, both the CHN and the spatially adaptive
IRN algorithm outperform the (standard) IRN algorithm. We
also note that the CHN and the proposed algorithm have
very similar performance for the grayscale case since both
share the corrupted-noise detection method. Table 1 sum-
marizes the ten-trial average of the reconstruction metrics
for the IRN, the spatially adaptive IRN algorithm, and for
CHN algorithm (where data is available). Figs. 2-4 show
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the noisy test images, and their respective reconstruction im-
ages, based on the spatially adaptive IRN algorithm, for a
noise level of 70% and 90%.

The execution time for the proposed algorithm is split
into two specific tasks: Corrupted-pixel set detection and It-
erative Minimization based on the IRN algorithm. Table 2
shows that the iterative procedure has a predominant weight
in the computational time, although the noise detection step
increases with the noise level, which is expected. Moreover,
the computational performance of the spatially adaptive IRN
outperforms that of the CHN algorithm ([9, Table II]) by a
factor of 100 to 1 for images with 70% and 90% of noise cor-
ruption. Considering a correction factor for the CPUs avail-
able six years ago ([9] was published in 2005), this is still a
significant computational improvement.

(a) (b)

(c) (d)
Figure 2: Image denoising for grayscale images: (a) 90%
noise corrupted Lena. (b) 90% noise corrupted Bridge. (c)
Reconstructed Lena. (d) Reconstructed Bridge.

5. CONCLUSIONS

The spatially adaptive IRN algorithm proposed in this paper
has shown to accomplish high quality reconstructions for the
salt and pepper noise scenario; it does not need any apriori
information about the noise statistics nor any manually se-
lected regularization parameters. The computational results
show an outstanding structural preservation for noise levels
up to 90%. Moreover, this method is performed in a simple
but computationally efficient fashion, with a huge computa-
tional improvement (up to two orders of magnitude) over the
previously developed methodology. The utilization of local
parameters introduces a substantial effect in the reconstruc-
tion quality, while the adaptability feature allows to reach
optimal quality values in an iterative but fast and accurate
fashion, making this method comparable with the state of the
art algorithms.

(a) (b)

(c) (d)
Figure 3: Image denoising for color Lena: (a) 70% noise
corrupted. (b) 90% noise corrupted. (c) Reconstructed image
for 70% noise level. (d) Reconstructed image for 90% noise.
level
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