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ABSTRACT 

 

Relative navigation of spacecrafts may be accomplished via 

time delay estimates. In this work an adaptive filtering 

approach is employed, which involves an estimation and a 

detection step. By formally posing the detection problem, a 

more meaningful detector, that embeds a reliability measure 

into the delay estimates, is proposed. The estimation step is 

enhanced via convex combination schemes, that address the 

Poisson distributed signals, sparse channel and low signal-

to-noise ratio. To evaluate time delay estimation techniques, 

different criteria based on probability of detection are 

studied, leading to a new figure of merit. The resulting 

solution outperforms the existing adaptive filters techniques 

under the new criterion, as shown by simulations. 

 

1. INTRODUCTION 

 

The use of signals delay for navigation is a well established 

method, used from the obsolete LORAN (LOng RAnge 

Navigation) to GPS (Global Positioning System) [1]. In 

space, however, it is not always easy to generate the beacons 

needed for such methods; yet formation flying is growing a 

key technology in these missions, e.g., the NASA 

EOS (Earth Observing System) program, of which Brazil 

participates [2]. Though beyond GPS range, deep space 

probes need the same accurate navigation information, 

relying mostly on ground stations, such as NASA’s Deep 

Space Network (DSN) [3]. Many applications (e.g., 

interferometric imaging [4]), however, only require relative 

positioning, where the use of celestial X-ray sources as 

bearing signals have often been proposed. 

Regardless of the source’s nature [3,5], the navigation 

problem can be reduced to that of time delay 

estimation (TDE). Referring to Figure 1, Δ�� is the relative 

position vector and ��� is the normal vector, assumed to be 

identical for both ships since they are closer to each other 

than to the source. The delay (��) between their received 

signals will depend on Δ� = ��� ∙ Δ�� = ���, the relative 

distance in direction ���, where � is the speed of light [5]. 

Using more sources allows three dimensional positions to be 

calculated. 

This work studies the TDE problem employing an 

adaptive filtering (AF) solution [6] and derives a reliability 

measure based on detection theory, which leads to a new 

detector and a more significant figure of merit to evaluate 

TDE systems. A convex combination of AFs is proposed to 

improve delay estimates under the new criterion over a wide 

signal-to-noise ratio (SNR) range. 

 

Figure 1. Relative position of two ships observing an X-ray source 

 

2. THE TIME DELAY ESTIMATION PROBLEM 

 

The signals are modeled observing that, due to the nature of 

X-ray sensors, both source signal and measurement noise at 

the spacecrafts can be represented as the realizations of 

Poisson processes. Their distributions are then given by 

�(�, �) = ��� ��
�! , where � is the expected number of 

arrivals in a time bin and � describes the probability of 

exactly � photons arriving in that bin. Also, since both 

vehicles are very far from the source, relativistic effects are 

considered to affect equally their detectors, so that the 

discrete measured signals can be summarized as 

 ��(�) = �(�) + ��(�), (1) 

 ��(�) = α�(� − ��) + ��(�), (2) 

where �(�) is the Poisson distributed measurement of the 

celestial source’s X-ray signal, 0 < α < 1 is an attenuation 

factor, ��(�) and ��(�) are independent noise signals, �� = #�� �$⁄ &, and �$ is the sampling period [3,5]. To extract 

the delay from the above signals, the ships must share 

observational data, which is not an issue given that 

communication also plays central role in attitude control [4]. 

A variety of solutions exists for the TDE problem, 

though the most commonly used is probably the generalized 

cross-correlation (GCC). This set of methods is an 

improvement on classical correlation where information on 

signal and/or noise is used to enhance its performance. One 

of the so called processors, the Hannan-Thomson (HT) 

processor, is the maximum likelihood (ML) time delay 

estimator [7]. 

The approach undertaken in this work, however, sees (1) 

and (2) in terms of a discrete channel model (Figure 2). This 

pseudo-channel can be approximated by an FIR filter, 
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whose coefficients are captured by an ' � 1 vector )*, ' > ��. AFs are used to identify the channel, whose 

optimal estimate is of the form )* = [0 ⋯ 0 . 0 ⋯ 0]0, with . at )*[��] [6]. This method takes on two distinct 

steps (Figure 3): (i) the estimation of the pseudo-channel 

and (ii) the detection of the delay in this estimate. 

 

Figure 2. Channel model of the TDE problem 

 

Figure 3. TDE through parameter estimation scheme 

This pseudo-estimation approach to TDE may be 

asymptotically efficient [6,8] like ML, though the Cramer-

Rao lower bound is known to be inadequate for low 

SNRs [9]; comparative studies have also revealed that under 

uncertain a priori knowledge and large noise LMS (Least 

Mean Squares) may perform as well as ML 

approximations [10] and other LMS-based algorithms [11], 

being less sensitive to changes in signals spectra than 

GCC [6]. In addition, previous work [5] shows that GCC 

may be outperformed the AF approach in low SNR. AFs 

robustness and simplicity further motivate their use in 

aerospace applications which impose hard constraints on 

power consumption and thus computational complexity. 

Finally, AFs are model-free, adapting even to non-stationary 

characteristics of systems [12]. These are the main reasons 

behind the choice of this technique over GCC [7], ML 

approximations [10] or sparse Bayesian methods [13]. 

 

3. THE DETECTION PROBLEM 

 

The original detection step is usually restricted to finding a 

peak in the pseudo-estimate [5-7,10,11], namely 

 �̂� = argmax ()) ∙ �$, (3) 

failing to address the reliability of the detection, a measure 

of foremost importance in iterative estimations (AFs) [6], 

which undergo a transient stage, and low SNRs, where 

anomalous effects become more significant [14]. 

The reliability of (3) is intimately related to the 

probability of detecting )* in ), which should manifest 

itself as a prominent peak over the corruption due to input 

noises. This problem, posed under a detection formalism, is 

equivalent to a hypothesis test that determines whether ) 

has a portion due to a delay in the input signals (7�) or if it 

is statistically equivalent to noise (78). Explicitly 

 
7�:  ) = )* + ):78:  ) = ):  , (4) 

where ):  represents the corruption in the pseudo-estimate 

due to input noise. It is shown in [12] that for long AFs, ) 

behaves as if normally distributed even if the input signals 

are not. Thus, the weights noise vector ):  is modeled as a 

Gaussian process ;(Ψ, =>: ), where Ψ = ?@ is the mean 

vector, with ? a scalar and @ an ' � 1 vector of ones, and =>: = E):): ∗ is the covariance matrix. The probability of 

detecting )* then becomes the conditional probability of 

choosing 7� given 7� and describes how reliable (3) is at 

finding the correct ��. 

The optimum test for the decision (4) is [15] 

 Λ = D(>E|GH)
D(>E|GI) ≷ K, (5) 

choosing 7� when Λ ≥ K and 78 otherwise. Applying the 

hypotheses (4) leads to 

Λ = MNOP�HQ(>E �>R�S)TUV:WH(>E�>R�S)X
MNOP�HQ(>E�S)TUV:WH(>E�S)X  . 

Since the natural logarithm is a monotonic function and 

that both sides of (5) are positive, the test is equivalent to 

 )*0=):��()E − Ψ) ≷ ln K + 12 )* 0=):��)* ≜ ν. (6) 

 

3.1. Detection and false alarm 

 

Given that (3) can always deliver a peak detection, 7� is 

initially assumed, then the detection reliability is evaluated. 

Thus, only two outcomes of the experiment in (4) are of 

interest: (i) choosing 7� when 78 is true (false alarm) and 

(ii) choosing 7� when 7� true (detection). Since (6) is an 

affine transformation of ), the conditional probabilities (i) 

and (ii) are Gaussian [16], yielding 

_̂ = ^[7�|78] = ^`)*0=>:��(): − Ψ) > νa = 

 = b c d
e)fT=V:−1)fh1/2j, (7) 

k̂ = ^[7�|7�] = ^`)*0=>:��()* − Ψ) > νa = 

 = b cd�)fT=)�−1()f−S)
e)fT=V:−1)fh1/2 j, (8) 

where _̂  and k̂ are the probability of false alarm and 

detection, respectively, and b is the complement of the 

standard normal cumulative distribution [16]. 

Ideally, _̂  should be as small as possible while k̂ is as 

large as possible. However, writing k̂ as a function of _̂ , 

namely 

 k̂ = b cb��( _̂) − )fT=V:−1()f−S)
e)fT=V:−1)fh1/2 j, (9) 
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it is clear that those are conflicting objectives, since k̂ is 

composed of a decreasing function of _̂ . Even so, for any 

given _̂ , k̂ can be enhanced increasing 

 
)fT=V:−1()f−S)
e)fT=V:−1)fh1/2 = l�m

n  , (10) 

where o = [=>: ]pq,pq
�/�

 and . can now be interpreted as the 

magnitude of the delay peak. Equation (10) induces a 

measure of reliability for the peak detection defined in (3), 

given that k̂ depends directly on it. 

 

3.2. The new time delay detector 

 

Using (10), a tractable measure of reliability can be built in 

the definition of the detector (3) by finding estimates for ., ? and o. The natural choice would be to use their ML 

estimates .r, ?s and ô. However, ML estimates are known to 

present large standard errors under low SNRs unless ) is 

very long [16]. As a result, an alternative measure of 

reliability is proposed in terms of available data. 

First, define )′ as the (' − 1) � 1 vector containing all 

the samples in ) but the correct delay tap )[��] (Figure 4). 

Under the 7� assumption taken earlier, )′ is composed 

uniquely of noise (from ):) and �� = argmax ()). Now, 

roughly assuming . ≅ max ()) and replacing the ML 

estimates by upper bounds, i.e. ?s ≤ max ()w) and ô ≤ max ()w), (10) becomes a practical and rather intuitive 

measure of reliability for (3), namely 

 
xyN (>)�xyN (>z)

xyN (>z)  . (11) 

Note that (11) captures the tendency of k̂ (see (9) 

and (10)). Besides, simulations have shown that, for low 

SNRs and considering the filter lengths employed in this 

work, it leads to better estimates for (10). 

 
Figure 4. Illustration of definitions based on { 

The new detector is finally endowed with a confidence 

level |, which expresses how well defined a peak must be 

before declaring the outcome of (3) a reliable delay estimate 

(Figure 4). Otherwise, the delay is declared undefined. 

Gathering (3), (11) and |, the new detector is given by: 

 �̂� = }argmax()) ∙ �$, xyN (>)�xyN (>z)
xyN (>z) > |

~��������, otherwise �, (12) 

Note that for | = 0 the classical detector (3) is recovered. 
 

4. THE ESTIMATION PROBLEM 
 

For (12) to be used, an estimate of the pseudo-channel must 

be provided, which may be obtained by minimizing the 

Mean Square Error (MSE) [12], defined as 

 MSE = E‖�(�) − ~�)‖��, (13) 

where ~� ≜ [ ��(�) ⋯ ��(� − ' + 1) ] is a row regressor 

vector and �(�) ≜  ��(�) is the desired signal. In the system 

identification setup, �(�) = ~�)* + �(�), where �(�) 

models the plant noise and depends on �� and �� (Figure 2). 

It is straightforward to show that minimizing (13) also 

minimizes �o(=>: ) [12], and, therefore, from (9) and (10), 

increases k̂. AFs attempt to minimizing (13), hence their 

use is justified to increase k̂. Moreover, the optimal 

solution to (13) is equivalent to GCC ROTH processor [6]. 

 

4.1. Convex combination 

 

The studied application presents rather unusual 

characteristics: Poisson-distributed signals, low SNRs and 

sparse channel, which makes difficult the design of one 

single AF able to address such scenario. In the literature 

there are techniques that automatically combine AFs via a 

supervisor, so that the global filter is able to outperform any 

of the individual AFs [17-20]. In convex combination 

schemes, the overall filter is obtained as 

 )��� = �(�))�,��� + (1 − �(�)))�,���, (16) 

where � ∈ [0,1] to guarantee convexity and the AFs )� and )� evolve independently. A typical choice for � is �(�) = �
���W�(�WH) , where � is a support variable adapted to 

minimize the global estimation error �(�) = �(�) − ~�)��� 

following the steepest descent rule [20] 

 �(�) = �(� − 1) − ��[∇�|�(�)|�]���(���)∗ . (17) 

The resulting recursion can be shown to be 

�(�) = �(� − 1) + ���(�)~�∗()�,��� − )�,���)�(�)(1 − �(�)) 

Candidate filters for )� and )� arise from the nature of 

the application, which support the use of the Least Mean 

Fourth (LMF) algorithm to address the low SNR and non-

Gaussian signals features [21], and the Improved 

Proportionate Normalized LMS (IPNLMS) algorithm, 

which explicitly accounts for the sparse pseudo-channel 

[22]. Their recursions are shown below: 

 )�,� = )�,��� + �~�∗���(�) (LMF) (14) 

 )�,� = )�,��� + ��
�������∗ ~�∗��(�) (IPNLMS) (15) 

where for � = 1,2, ��(�) = �(�) − ~�)�,���, )�,�  is an 

estimate for ) at iteration �, � > 0 is the step-size, 0 < � ≪ 1 is a regularization factor, 

� = diag  ��¡
�¢ @ + (1 + £) ¤>Q,�WH¤

�¥>Q,�WH¥H¦, £ is a constant 

(usually £ = −0.5) and diag©∙ª is the diagonal operator. 

 

5. A NEW FIGURE OF MERIT: DISCRIMINATION 

 

Although the previous section showed that minimizing the 

MSE improves the detection capability, it is known that, 

{ �� 

| 
{:  
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along with other common AFs performance assessments, it 

may be a misleading metric when it comes to TDE [6]. 

Since the delay is ultimately found by the detection stage, it 

is more suitable to use k̂ as a figure of merit to evaluate 

TDE solutions. However, calculating k̂ analytically is 

difficult, motivating different, sometimes fallacious, 

estimates of k̂ via Monte Carlo simulations. 

 

5.1. Existing detection criteria 
 

The use of the mean weight vector as a criterion for 

detection has sometimes been suggested [5,6], with 

corresponding probability of detection given by 

 ŝk = Pr [argmax(E)) = ��]. (18) 

Although accurate at higher SNRs, it becomes misleading as 

the noise level grows, due to an increase in the probability 

of anomalies, a phenomenon intrinsic to TDE 

problems [14]. Figure 5 compares E) to two ) realizations 

after 1000 iterations of an LMS filter in conditions similar 

to [5]. Clearly, though the ensemble average presents a peak 

at the true delay, the individual realizations do not, 

suggesting that (18) is not reliable in a practical situation, 

where only one realization is available. 

 
Figure 5. Comparison between the ensemble-averaged weight 

(solid line) and individual realizations (dashed lines) 

Under the new proposed detector (12), the probability of 

detection is 

 k̂ = Pr ¬xyN (>)�xyN (>z)
xyN (>z) > |­ argmax()) = ��®, (19) 

which represents the probability of detecting the peak at �� 

with a margin of |. The ML k̂ estimate ( ŝk̄ ¢) can be easily 

determined evaluating the ratio of correct detection to 

number of trials [16]. For | = 0, the accuracy 

percentage (AP) [23] figure of merit is recovered. 

 

5.2. A more convenient figure of merit 

 

From (19), when argmax()) = �� ⇔ max()) = )E[��]. 
Therefore, the discrimination ± can be defined from (11) as 

 ± = >E[pq]
xyN (>z) , (20) 

so that (19) becomes k̂ = Pr[± > | + 1]. This 

quantity (±) allows, with a single Monte Carlo simulation, 

to determine which | is required to meet a predefined k̂, 

which is very convenient for design purposes. To do so, 

 

recall that for long enough filters ) is approximately 

Gaussian [12]; then, from (20), so is ± (Figure 6). Thus, k̂ 

can be estimated using 

 ŝk± = b ¬²����±³± ®, (21) 

where �± and ±́  are the mean and standard deviation of ±. 

Different | can be tested via (21) using a single ensemble 

average evaluation. 

Figure 7 compares ŝk, ŝk̄ ¢  and ŝk± for SNRs ranging 

from -15 dB to 0 dB, with | = 0 and the same parameters as 

in Figure 5. As expected, (18) overestimates the ability of 

detecting the correct delay at low SNRs, while ŝk± follows 

closely ŝk̄ ¢. 

Figure 6. Histogram of µ 

(SNR = -12 dB) 
Figure 7. Probability of 

detection estimates 
 

6. SIMULATIONS 

 

Using (1) and (2) as the model for the signals acquired by 

the spacecrafts, the AFs applied by [5] and the specific 

combination proposed in Section 4.1 are compared using 

(21) for different SNRs (−15 ≤ ¶·= ≤ 10 in dB) in the 

scenario of relative navigation. The experiment is carried 

out in a stationary scenario with α = 0.9, ' = 100, �� = 50, the source signal variance θ$ = 1, and the 

measurement noise variances θºH = θºQ = θp. The AFs 

tuning lead to �¢¯» = 1.2 ∙ 10�¼ M⁄ , �½¢¯» = 10��, �¢¯_ = 9 ∙ 10�¾ M⁄ , �¿À½¢¯» = 10��, £ = −0.5, � = 10�¾ 

and �� = 0,5. 

Figures 8 and 9 show the average ± after 5000 

iterations, highlighting the region of interest, since for ¶·= > 0 dB the tendencies do not change. The plots show 

the superiority of NLMS and IPNLMS for higher SNRs, the 

latter being slightly better, whilst LMS and LMF excel for 

SNRs below −8 dB. They also reveal the convex 

combination is an improvement over the individual AFs. 

 
Figure 8. µ x SNR for individual adaptive filters 
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Figure 9. µ x SNR for convex LMF/IPNLMS 

Although practical, Figures 8 and 9 can be misleading 

since they do not account for the variance of ±. To address 

that, k̂ is calculated based on (21) adopting a threshold 

commonly used in the radar and wireless milieu [24]: ± = 3 dB (| = 0,41). Figure 10 now clearly reveals the 

LMF superiority in terms of k̂, justifying the convex 

combination, which highly improved the detection at lower 

SNRs, albeit at the cost of performing slightly worse than 

the IPNLMS over a small region (Figure 11). Overall, it 

evidently enhanced the TDE over the SNR range. 

 
Figure 10. Probability of detection for µ = Ä dB 

 
Figure 11. ÅÆ x SNR for µ = Ä dB for convex LMF/IPNLMS 

 

7. CONCLUSION 

 

TDE problems based on AFs involve an estimation stage 

followed by a detection stage. Both steps were addressed in 

this work by proposing a new detector that embeds a 

practical reliability measure and a convex combination 

scheme that improves the probability of detection. The latter 

was argued as a more meaningful metric to evaluate TDE 

solutions. Future works will include the use of hierarchical 

combinations [25] to employ other PNLMS-based AFs [26] 

and the study of non-stationary delays. 
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