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ABSTRACT

Imaging radars employ wideband linear frequency modu-
lation (LFM) waveforms to achieve high resolution while
maintaining moderate sampling rates through restricting the
target support to a known range interval and using stretch
(deramp) processing. In recent work motivated by compres-
sive sensing principles, multi-frequency extensions of the
chirp waveforms were proposed to obtain randomized pro-
jections of range profiles. This paper considers the sparse
target recovery problem with chirp transmit waveforms and
their multi-frequency extensions. We derive the sensing ma-
trix for multi-frequency chirp waveforms and study its coher-
ence properties. We show that multi-frequency chirp wave-
forms result in sensing matrices with lower coherence be-
tween the columns resulting in improved target estimation
performance compared to the standard LFM waveform.

1. INTRODUCTION

Radar sensors extract information about the targets in its
range by transmitting bandpass RF waveforms to probe the
target channel and sampling the backscatter return after suit-
able receive filtering. Imaging sensors achieve high resolu-
tion using wideband modulated waveforms and match filter-
ing on receive [10]. Digital implementation of match filtering
requires sampling of the received waveforms at the Nyquist
rate of the transmit waveform. For the special case of chirp
waveforms with linear frequency modulation the match fil-
tering can be implemented through a combination of ana-
log mixing stage and sampling at a fraction of the Nyquist
rate proportional to the ratio of the target spatial support
to the pulse width. In recent work [6], motivated by com-
pressive sensing principles [3, 2], Ertin proposed the use of
multi-frequency extension of chirp processing chain termed
as compressive illumination to obtain randomized projec-
tions of the range profile.

In this paper we study sparse recovery performance of
compressive illumination strategies. We first model radar
imaging as a channel sensing problem where the channel
impulse response is estimated from its noisy linear projec-
tions. Next we derive the sensing matrix for single and multi-
frequency chirp transmit waveforms and provide a brief a
review of results from the literature relating stable recov-
ery of sparse signals to the coherency of the sensing matrix.
We show that compressive illumination with multi-frequency
chirp waveforms with appropriate received processing re-
sults in lower coherence sensing matrices and improved tar-
get support recovery performance as compared to traditional
single carrier chirp signaling.
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1.1 Sensing Matrices for Radar Imaging
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Figure 1: Radar as a channel sensing problem

Figure 1 shows the radar sensing model . The radar sen-
sor transmits a waveform ¢ (¢) which is convolved by the tar-
get channel response A(t) and then filtered by the receive fil-
ter r(¢) and sampled. We assume the waveform ¢(¢) is the
complex baseband form of the transmitted waveform with fi-
nite energy E over the pulse length [0, 7]:

E= [TowPar

We assume the complex baseband target response A(t) is a
random process that models a causal impulse response of a

linear time invariant system with known support [%&7 %} in
time. The noise waveform n(¢) is a Gaussian random process
with known constant power density, bandlimited to receiver
bandwidth.

Discretization of the sensing model results in the vector
model given in Equation (2), where the M x 1 measurement
vector y is a noise-corrupted version of the transmitted wave-
form ¢ that has propagated through a sequence of two linear
operators: target channel filter H and receiver shaping filter

ey

RHY +n (2

The convolution matrix H is formed using the unknown tar-
get response, whereas the receive filter convolution matrix R
is formed using the known filter impulse response r(¢). The
vector n represents sensor output noise with complex circu-
larly symmetric additive white Gaussian noise with known
variance 0,,. The model in (2) can be extended to incorpo-
rate multiple transmitters and/or receivers, and time-varying
channels and receive and transmit operations. In this paper
we consider a static scene and time-invariant filter operation
and a single coherent pulse. Multiple pulses can be easily
incorporated in the model by concatenating outputs from dif-
ferent pulses increasing the length of the received signal vec-
tor and the transmit waveform vector.

y =
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Linearity of the channel operator H enables us to write
the channel output vector H¢ equivalently as ®h, where h
is an N x 1 vector of channel impulse response A(t), and @
is a linear operator appropriately constructed from ¢ . This
results in:

R®h+n 3

In addition we consider target responses with a sparse
representation in some given basis W (i.e., h = Wx for sparse
X), resulting in the standard sparse sensing model:

y =

Ax+n @
where the M x N matrix A(®,R) = R®(¢)¥ serves as the
sensing matrix of the radar system, rxop is the convolution
matrix with transmit waveform ¢(z), ® is the convolution
matrix of the receive filter r(¢). In the remaining of the paper
we will assume that the target scene consists of small number
of point scatterers, or equivalently that the discretized target
impulse response itself is sparse (i.e. ¥ =1I).

y =

1.2 Sparse Signal Recovery and Mutual Coherence

Compressed sensing research considers the linear inverse
problem given in Equation (4), which is recovery of a sig-
nal x from noisy measurements of its linear projections. The
focus is on the underdetermined problem where the sensing
matrix A forms a non-complete basis with M < N. The re-
sulting ill-posed inverse problem is regularized assuming:
(a) that the unknown signal x has at most K non-zero entries
(b) the noise process is bounded by ||n||» < €.

Results in CS theory provides sufficient conditions for
stable inversion of the forward problem given in (4) for a
class of forward operators A. One such class of operators is
defined through a bound on the singular values of the sub-
matrices of A. Specifically, the restricted isometry constant
(RIC) &, for forward operator A is defined as the smallest
0 € (0,1) such that:

(1= &) IIxl13 < [[A13 < (14 8) 1«13 ®)
holds for all vectors x with at most s non-zero entries. One
sufficient condition in the literature shows that for forward
operators with suitably small restricted isometry constant
(&5 < V2 —1), stable signal recovery of K-sparse signals
can be achieved through the solution of the computationally
tractable /| regularized inverse problem [1] termed as Basis
Pursuit:

(6)

In effect, the convex optimization problem in (6) approxi-
mates the solution for the NP-hard problem of finding the
sparsest feasible solution given below in (7) with bounded
error.

(N

where || - ||o is the ¢y semi-norm, i.e. the number of nonzero
entries in the vector. For large M, estimating and testing the
restricted isometry constant is impractical. A computation-
ally efficient, yet conservative bound on RIC can be obtained
through the mutual coherence of the columns of A defined
as:

min ||x||; subject to ||Ax —y||3 < &.
X

min ||x]|o subject to [|Ax —y||3 < &,
X

lATA;|
U(A) = max ————.
[1Ail[[1A;]]

8
i#] ®

An equivalent definition of mutual coherence is the maxi-
mum of the absolute of the off-diagonal entries of the Gram

Matrix G = A'A, where (+)' denotes the Hermitian transpose
and A is computed through normalizing columns of A to have
unit norm:
p(A) = max |G| ©
i#]

Mutual coherence can be used to guarantee stable inver-
sion through ¢; recovery (6) , since RIC is bounded by
Oy < (s—1)u. The bounds based on the maximal element
of the off-diagonal entries of the Gram matrix (mutual co-
herence) are often quite pessimistic in practice which led the
study of alternative metrics for sensing matrix optimization
based on average measures of coherence.

Tropp [11] used cumulative coherence function p(m;A)
defined for each natural number m as:

u(m;A) = max max Y |Gjjl.
(m;4) IA|<m jgA ,.EZ/:\ Y

(10)

to bound the performance of convex relaxation of the sparse
recovery problem. Elad [5] proposed z-averaged mutual co-
herence metric defined as:

Yizj(|Gijl >1)-1Gijl
,LL;(A): #J J - J
YitjlGijl >t

an

Elad fixes a target value for ¢t and optimize the sensing matrix
A to iteratively minimize 1 (A). An alternative direct strategy
proposed by Duarte-Carvajalino et al. [4] attempts to design
the sensing matrix to make the associated Gram matrix as
close as possible to the identity matrix.

In the following we derive the sensing matrix A for multi-
frequency chirp waveforms and study the coherence of the
columns of A and show that the proportion of large values
in the off-diagonal entries of the Gram matrix is significantly
reduced as compared to the traditional single frequency chirp
waveform suggesting better sparse target recovery perfor-
mance. Through simulation experiments we verify improved
MSE performance of radar sensors with compressive illumi-
nation for various values of sparsity 6 = K/N and signal-to-
noise (SNR) ratio.

2. SENSING MATRICES FOR MULTI-FREQUENCY
CHIRP WAVEFORMS

In this section we derive the sensing matrix of a multi-
frequency linear FM waveform with staggered carrier fre-
quencies and study its coherence distribution empirically.
The time-domain waveform for K sub-carriers is given by:

K
—V i rect( L (e %
fo) = /;e] rect(T)exp (]27r(f r+ > t2)) (12)

where « is the common chirp-rate, 7 is the pulse width,
f* and ¢*is the frequency and the complex phase of the k’th
carrier. The bandwidth B of each linear frequency waveform
is equal and is given by B = ta. The backscatter return
from a target at range d will result in two-way time delay
oft; = %. Without loss of generality we can assume that the

frequency of the first carrier is fixed at f' = f,, where fj is
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the frequency of the reference carrier used at the receiver for
dechirping.

r—1ty
)

r(it) = ¢ ej¢krect(

K
13)

=1
X exp (j277:(fk(t —tg)+ %(f *fd)z))

The amplitude ¢ of the return signal depends on the target
radar cross section, propagation delay and overall radar sys-
tem gain. The return signal is dechirped with a reference
linear frequency waveform of fixed carrier frequency fy:

Ttr)exp (—j27r(fot+%t2)) (14)

r

m(t) = rect(l

The receive window 7, and the reference range delay #,is de-
termined by the unambiguous range R, = Ryux — Rpin and
the reference range R, = (Ryx + Rin) /2 through:

2R 2R
7= =" A (15)

& c

The resulting wideband signal s(z) = m()r(¢) at the input of
the low-rate A/D is given by:

s(t) =

K —(t, —
cy emkm(w) (16)
k=1 T

xexp (127((f* = fo)r = f*1a) )
X exp (jZn’(—(Xttd + %ﬁ)

Collecting significant terms, we can simplify equation (16)
further as:

K —_ —
sty = ¢ e/¢<fk"d=¢k>rect(y) (17)
k=1

xexp (/27((f* ~ fo — ata)r))
where the overall phase of the signal ¢ (f*,z,, ¢) is given by:

O(fF 14, 0%) = o* —2mfF1, (18)

We observe that the resulting signal is composed of mul-
tiple sinusoids whose instantaneous frequency is given by:

finst = (f* = fo— ata) (19)

Now, the compressive measurement is obtained by using
an A/D with a low sampling rate of f; = 2a7,. this re-
sults in aliasing of the multiple sinusoids in to the base-
band [—f;/2, f;/2] with random complex coefficients given
in Equation (18) and frequency components given in Equa-
tion (19).

If we consider the discretized version of the unknown
range profile as the vector x, with range bins at d; = kA then
the time domain measurement vector y at the output of the
A/D can be modeled as

y=Ax+n (20)

where column k of the sensing matrix A correspond to FFT
of the samples given in Equation (17) for a singular tar-
get vector at range bin k corresponding to a delay of 7; =
2(Ryin — kA)/c. Figure 2 shows a single column of A for
a chirp waveform modulated by 10 subcarriers. As a result
10 copies of the single target is aliased into the baseband
at known locations corresponding to the carrier differences
f*— fo. We note that targets that are closer than the reference
range R, appears at negative relative range. In the following
section we study the coherence of the columns of the sens-
ing matrix A and study sparse target recovery performance
empirically through simulations.

—80 —60 —40 —20 o 20 40 60 80
range (m)

Figure 2: Sampled returns for a compressive illumination
radar receiver

The concept of using low-resolution radar receivers at
different frequencies have been proposed before. Gjess-
ing [7] considers use of multi-frequency continuous wave
radar system for high range resolution radar applications,
Jankiraman [8] describes a wideband radar system with
multi-frequency linear FM continuous transmit waves and
matching number of stretch processors. The compressive
illumination technique studied in this paper relies on pur-
posefully aliasing multiple copies of the target response with
known pattern with the goal of maximizing the information
rate of low-frequency A/Ds. The block diagram of the com-
pressive illumination sensor is given in Figure 3. Specifi-
cally, the radar system transmits a multi carrier LFM signal
and the received signals from the multiple carriers are aliased
onto the narrowband receiver of a single carrier requiring
only a slower A/D. The design complexity is not dependent
on the number of carriers. We note that the aliasing in range
strategy through transmitter diversity is similar in spirit to
Mishali and Eldar’s [9] work on aliasing across the frequency
domain for signals with sparse bandwidth support, where the
aliasing projections are implemented in the receiver.

3. COHERENCY DISTRIBUTION OF RADAR
SENSING MATRICES

As discussed in Section 1.2, minimizing large entries of the
off-diagonal entries of the Gram matrix is essential for sta-
ble recovery of a sparse signal from its noisy projections.
We consider the empirical cumulative distribution function
F(t;A) of the entries of the Gram matrix derived from A:

o Lij(Gi>1)
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Figure 3: Block Diagram of the Radar Sensor with Compres-
sivelllumination

Figure 4 shows F(r;A) for multi-frequency chirp transmit
waveform with M = 1,7, 15 subcarriers. We observe that the
percentage of entries exceeding a small threshold of t = 0.5
is significantly higher for the traditional single carrier wave-
form suggesting a higher percentage of target realizations
will result in poor recovery with a standard LFM radar with
M =1 carrier.
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Figure 4: Emprical cumulative distribution of the off-
diagonal entries of the gram matrix G for transmit waveform
with M = 1,7, 15 subcarriers

Next, for an empirical verification of this insight we re-
port simulation results that characterize MSE perfomance of
sparse target estimation through the Basis Pursuit algorithm.

4. SIMULATION STUDY OF SPARSE TARGET
RECOVERY PERFORMANCE

In this section we present results of a Monte Carlo simula-
tion study of multi-frequency chirp transmit waveforms com-
bined with a deramp receiver whose output is sampled using
a low rate A/D. The simulations are conducted over different
number of subcarriers (M = 1,7,15), target sparsity levels
(6 = K/N) ranging from 0.1 to 1 and SNR levels ranging
from 0 to 60dB. For each M,8,SNR simulation step, 100
Monte Carlo realizations have been used. = We simulated
multi-frequency linear FM signals with 750 MHz total band-
width and 10 psecond duration, composed of M subcarri-
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Figure 5: (Top) Received signal for a single carrier transmit
LFM waveform and dechirp receiver, (Bottom) Sparse Re-
covery of target response using BP, * shows the true target
locations and amplitudes, o shows the detected target loca-
tions and amplitudes
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Figure 6: (Top) Received signal for a single carrier transmit
LFM waveform and dechirp receiver, (Bottom) Sparse Re-
covery of target response using BP, * shows the true target
locations and amplitudes, o shows the detected target loca-
tions and amplitudes
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ers each with 50 Mhz bandwidth with non-overlapping fre-
quency support . The center frequencies and complex phases
of the subcarriers are randomly selected at each simulation
run. The wideband received waveform is then dechirped us-
ing a single stretch processor with a single reference chirp of
50 MHz bandwidth and sampled at a rate of 5 Msample/sec
of complex I/Q samples corresponding to an unambiguous
range of 150 meters. Finally Gaussian complex symmetric
noise is added to the samples at the given SNR.
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Figure 7: Mean Square Error performance of BP Recov-
ery for M = 1,7,15 carriers. for each subfigure x-axis:
sparsity(6 = K/N) and y-axis: SNR

Figure 5 and 6 shows the results of a single simulation
run with 10 point targets of complex amplitude at an SNR
level of 20dB for M =1 and 15 subcarriers. We observe that

for a traditional single carrier chirp system, the system out-
put is readily interpretable as the range profile with resolu-
tion matching the 50 MHz bandwidth. Basis pursuit recovery
algorithm using the prior knowledge of SNR for the single
carrier chirp results in localization of most targets, however
closely spaced targets cannot be detected with few false de-
tections. For the multiple carrier chirp transmit waveform the
radar receiver output is harder to interpret visually since each
of the 10 targets is aliased 15 times. However Basis pursuit
recovery algorithm armed with the knowledge of the aliasing
pattern can reliably detect all 10 targets.

The results of the Monte Carlo simulations are summa-
rized in Figure 7. We observe that the region of the (SNR,
target sparsity) plane where the target response can be esti-
mated with low MSE is larger for multi-carrier chirp wave-
forms. This is consistent with our observation that multi-
carrier chirp waveforms result in lower coherency sensing
matrices. We also observe that saturation of the performance
as additional subcarriers are added as both the MSE recovery
performance and the cumulative coherence distribution are
comparable for M =7 and M = 15.
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