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ABSTRACT

In the context of automatic detection and classification for mine
hunting applications, a high quality segmentation of sonar images
is mandatory. Assuming a Markov Random Fields representation
of the images, we propose a min-cut/max-flow segmentation algo-
rithm. We introduce an original initialization of the graph cut algo-
rithm based on the segmentation result of an Iterative Conditional
Modes (ICM) segmentation approach. A large database of synthetic
aperture sonar images containing 378 spherical and cylindrical man
made objects has been segmented using both the ICM algorithm
and the graph cut approach. Both sets of results have been automat-
ically classified according to a set of significant features. Results
are compared.

1. INTRODUCTION

The high resolution achieved by Synthetic Aperture Sonar (SAS)
images encourages the development of Automatic Detection and
Automatic Classification (ADAC) systems for mine hunting appli-
cations [1, 2]. Image segmentation is the first step of most ADAC
systems and its quality determines to a great extent the performance
of the classifier. Three labels are typically considered: the high-
lights of the objects hlt, their shadows shw and the background
bkg. In Fig. 1 the segmentation of a sonar image showing a cylin-
drical man made object is illustrated.

Markov Random Fields (MRF) have traditionally been uti-
lized to model sonar images for segmentation purposes [3, 4].
They consist of two fields, (y,x). The observation field y =
(y1, . . . ,yp, . . . ,y|P |) is defined by the intensity yp of each pixel

p∈P . The label field x= (x1, . . . ,xp, . . . ,x|P |) is the ‘ground truth’
that we want to recover. Each xp corresponds to one of the possible
labels {hlt,shw,bkg}. The probability density function (pdf) of
x, P(x), can be expressed as P(x) = ∏p∈P P(xp), where P(xp) de-
pends only on the neighboring pixels of p (see Sec. 2). Segmenting
y is equivalent to estimating x. According to the Bayes theorem,
the optimal x maximizes the a posteriori probability, i. e.,

x̂ = argmax
x

{P(x|y)} = argmax
x

{P(x) ·P(y|x)}. (1)

This is a computationally unaffordable task and, therefore, a sub-
optimal x̂ is required. The Iterative Conditional Modes (ICM) al-
gorithm [5] has traditionally been employed and, for sonar images,
produces reasonable results when combined with the Iterative Con-
ditional Estimation algorithm for estimating the MRF parameters
(see [1]). An initialization is also required (see [6]).

However, challenging sea bed scenarios such as sand ripples or
backgrounds with parts almost as dark as the objects shadow can
lead to poor segmentation results, as shown in Fig. 1, where the
shadow of the cylindrical object is much broader than the cylinder
itself and has, moreover, a very irregular shape.

In [7] it is demonstrated that a min-cut/max-flow algorithm can
be used to estimate x. Thus, we have utilized a computationally
efficient implementation of a graph cut algorithm [8] to segment
the sonar images. Using a graph representation for the image, a
min-cut/max-flow algorithm splits it into two groups of pixels, one
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Figure 1: SAS image and ICM segmentation result. The hlt label
is depicted in green, the shw label in red and the bkg label in blue.

assigned to the shadow label shw and the second to the background
label bkg. The ICM result for the hlt label is in general satisfac-
tory, and therefore is not regarded by the graph cut approach. To
the best knowledge of the authors, it is the first time that graph cut
theory is applied for segmentation of sonar images.

In Sec. 2 the graph theory is summarized. Sec. 3 deals with the
modeling of both regional and boundary properties of the sonar im-
ages within the graph theory frame. The initialization of the graph
after the ICM segmentation result is described in Sec. 4. In Sec. 5,
we present the segmentation results provided by both the ICM based
algorithm (implemented as proposed in [1]) and the graph cut for
a database of real SAS images with 378 man made objects. The
performance of the two algorithms is compared using a statistical
classifier. Finally, conclusions are provided in Sec. 6.

2. GRAPH THEORY

A directed weighted graph G = {V,E} consists of a set of nodes V
and a set of edges E . An edge represents a connection between two
ordered nodes, that is, E = {{p,q}|p,q ∈ V}. A function w : E →
R+ assigns a positive real valued weight to each edge, denoted by
w{p,q}. Since the graph is directed w{p,q} 6= w{q,p} [9].

Grid graphs are typically employed in computer vision to rep-
resent images, since the alignment of nodes in rows and columns is
a natural representation of the image pixels p∈P . A neighborhood
system, N = {{p,q}|p,q ∈ P}, has to be chosen to establish the
edges configuration connecting the different pixel nodes. For our
application, the second order neighborhood system is considered,
which implies that each pixel is connected to its 8 direct neighbors.

For the purpose of image segmentation some extra nodes de-
noted as terminals are required. Each terminal corresponds to one
of the possible pixel labels. For binary segmentation we need two
terminals, the source s and the sink t. In a terminal graph, each
pixel is connected not only to its 8 neighbors, but also to the ter-
minal nodes s and t. Hence, we distinguish two kinds of edges:
n-links (neighboring links) are edges between two pixel nodes and
t-links (terminal links) are edges between a pixel node and a termi-
nal. Thus, the two-terminal graph is defined as:

G : V = P ∪{s,t}, E = N ∪{{p,s},{p,t}|p ∈ P}
︸ ︷︷ ︸

t-links

. (2)
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A two-terminal graph representing a 3× 3 image is depicted in
Fig. 2.

t Sink (background)

s Source (shadow)

Figure 2: Graph representation of a 3×3 image with two terminals
and a second order neighborhood system for the n-links.

2.1 Min-Cut / Max-Flow

An s/t cutC (hereafter referred to only by cut) on a graph separates
the set of nodes V into two disjoint subsets S ⊂ V and T ⊂ V ,
S ∩T = /0, such that the source s ∈ S and the sink t ∈ T . In our
application, S corresponds to the shw label and T to the bkg label.
A cutC = {S ,T } is a subset of E containing all edges {p,q} where
p ∈ S and q ∈ T . The cost of a cut |C| is defined as the sum of the
weights of the edges inC, i.e., |C|=∑{p,q}∈Cw{p,q}. The minimum

cut is defined as a cut on graph G that has minimum cost.
The min-cut/max-flow theorem states that for any directed lin-

ear graph the maximum flow value from s to t is equal to the cost of
the minimum cut separating s and t [9]. In other words, finding the
minimum cut of a graph is equivalent to finding its maximum flow.

In order to illustrate the concept of flow in a graph, let us in-
terpret the directed graph as a network and the edges as pipes con-
necting the nodes. Each pipe has a certain capacity c{p,q} that cor-

responds to the weight of the edge w{p,q}. Now we can push a flow

f (s,t) through the network leaving the source and arriving at the
sink. According to the min-cut/max-flow theorem, fmax = |C|min.

Before stating the conditions that define a finite flow f in a net-
work, let us denote all outgoing edges from node p and all incoming
edges to node p by,

O(p) = {{p,q} ∈ E |q ∈ V} (3)

I(p) = {{q, p} ∈ E |q ∈ V},

respectively. The first condition is given by,

∑
q∈O(p)

f (p,q) − ∑
q∈I(p)

f (q, p) =

{
f if p = s

− f if p = t
0 otherwise

(4)

which is comparable to Kirchhoff’s current law. Assuming that out-
coming flows are positive and incoming flows are negative, the sum
of all outgoing and incoming flows must be zero for all nodes but
the source and the sink. The flow emerging from the source, f ,
is equal to the flow arriving at the sink. Secondly, capacities must
be finite, i.e., c{p,q} < ∞. Finally, the flow within an edge cannot

exceed its capacity, f (p,q) ≤ c{p,q}.

edge w{p,q} link

{p,q} Bp,q n-link
{p,s} λ ·Rp(bkg) t-link
{p,t} λ ·Rp(shw) t-link

Table 1: Edge weighting

2.2 Efficient Implementation

We have adopted the min-cut/max-flow algorithm proposed in [8],
which is broadly used in the literature. It is based on the augment-
ing path concept [9]. The algorithm works on a residual graph G f ,
which is initialized as G. In each iteration, a path along non sat-
urated edges from s to t is searched in G f . The smallest capacity
along the path determines the maximum flow ∆ f that can be pushed.
The residual capacities of the edges along the augmented path are
reduced by ∆ f , while the residual capacities of the reverse edges
are increased by the same amount. The total flow from s to t is in-
creased, f = f +∆ f . The algorithm terminates when there are no
more s→ t possible paths.

3. EDGE WEIGHTING

Segmenting an image using graph theory is equivalent to finding the
minimum cut of its associated graph. Therefore, the segmentation
result is determined by the edge weights. There are two kinds of
edges, the n-links and the t-links (see Sec. 2). The former link each
pixel with its neighbors, while the latter link each pixel with the
source and the sink. Hence, it is natural that the weights of the
n-links account for the so-called boundary properties of the image
(related to P(x) in Eq. (1)) while the t-links depend on its regional
properties (P(y|x) in Eq. (1)).

We can express the cost of the label field x as [10]:

E(x) = λ ·R(x) +(1−λ ) · B(x) (5)

where the coefficient λ ∈ [0,1] specifies the relative weighting of the
regional property term R(x) with respect to the boundary property
term B(x), and

R(x) = ∑
p∈P

Rp(xp) (6)

B(x) = ∑
{p,q}∈N

B{p,q} ·δxp 6=xq .

Note that the boundary term associated to an edge, B{p,q}, con-

tributes to B(x) only if xp 6= xq.
Let us now describe how to assign the weights w{p,q} to the

edges so that the expression in Eq. (5) corresponds to the cost of the
cut defined by a certain labeling x, that is, E(x) = |C|. Considering
the definition of a cut on a two terminal graph (see Sec. 2.1), we can
make the following statements regarding a cut C:

• if p ∈ S then {p,t} ∈C

• if p ∈ T then {p,s} ∈C

• {p,q} ∈C iff p ∈ S and q ∈ T .

For every node p ∈ P , exactly one t-link is severed by the cut. If
two neighboring pixels p and q are labeled differently, the edge with
its origin in S and destination in T is severed by the cut. Then, an
assignment of weights to the edges of graph G according to Table 1
ensures a minimization of E(x) by the minimum cut on G.

3.1 Regional Properties

The more likely a pixel p is to belong to a region, the lower the re-
gional cost Rp(xp) of assigning the corresponding label to the pixel
must be. Hence, it is reasonable to express the regional cost as a
function F of the pdf, P(yp|xp), of the two regions of the image,

Rp(xp) = F(P(yp|xp)), xp = {shw,bkg}. (7)
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Figure 3: Regional and Boundary properties. For G1, m = 1
4 and

n = 3 have been chosen.

Since Rp(xp) should decrease with increasing P(yp|xp), F must be
a monotonically decreasing function. Two options have been con-
sidered:

F1(x) = 1−x (8)

F2(x) = − ln(x). (9)

Fig. 3 shows F1 and F2 versus P. While F1 and F2 are similar for
high values of P, they differ significantly for small P. The difference
between the segmentation results that F1 and F2 produce is, how-
ever, negligible. This is due to the fact that edges with high weights
do not get saturated and therefore do not determine the maximum
flow. For the examples shown in Sec. 5, F2 has been chosen.

In order to estimate the pdf of the two regions, P(yp|shw) and
P(yp|bkg), the pixels seeds (see Sec. 4) are used. A Weibull distri-
bution has been assumed for both regions [3].

3.2 Boundary Properties

The boundary properties account for the fact that neighbor pixels
with similar intensities should belong to the same region. There-
fore, the boundary cost B{p,q} can be defined as a function G of

the magnitude of the pixel intensity difference normalized by the
standard deviation σ ,

B{p,q} = G

(
|yp−yq|

σ

)

. (10)

Two function families have been studied:

G1(x) = (m+x)−n, n,m ∈ Q+ (11)

G2(x) = exp

(

−
x2

2

)

, (12)

where n and m need to be chosen. An example of each func-
tion family is depicted in Fig. 3. Both functions are similar when
|yp−yq|> σ , but differ greatly otherwise. Again, the segmentation
results that both functions produce are almost identical, since only
the high weights differ and those do not influence the minimum cut.
For the examples shown in Sec. 5, G2 has been used.

4. INITIALIZATION: SEEDS

It is possible to fix the label of a group of pixels, the so-called seeds.
The subsetsO ⊂P and B ⊂P , O∩B = /0, denote the sets of seeds
that are initially labeled as sdw and bkg, respectively. This influ-
ences the labeling of the adjacent pixels via the boundary properties.

In our application the seeds are chosen after the ICM segmen-
tation result. First, a rectangular structuring element is employed to
morphologically erode the shadow region. Its dimensions are pro-
portional to those of the ICM shadow, that is, if the size of the small-
est rectangle that completely contains the ICM segmented shadow
has a size of M×N pixels, then the structuring element has dimen-
sions r ·M× r ·N, with r ∈ (0,1). The pixels that remain and that,
moreover, lay to the right of a highlight region, are added to the O
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Figure 4: ICM and graph cut segmentation results with r = 0.2 and
λ = 0.1 for the sonar image in Fig. 1. The seeds for the graph cut
algorithm initialization are highlighted in the ICM image.

set of seeds. After, the bkg region is eroded and the remaining pix-
els are considered as B seeds. The greater r is, the less pixels are
assigned to the seed sets, that is, the graph cut segmentation is less
influenced by the ICM result. Fig. 4 includes the ICM and the graph
cut segmentation results for the SAS image in Fig. 1. The seeds that
stem from the ICM segmentation with r = 0.2 are highlighted.

We need to assure that the seed pixels do not change label dur-
ing the max-flow search. According to [10] this is achieved by set-
ting:

• if p ∈ B, w{p,s} = 0 and w{p,t} = L

• if p ∈O, w{p,t} = L and w{p,s} = 0

where L = 1+maxp∈P ∑q:{p,q}∈N B{p,q}.

5. RESULTS

5.1 Segmentation Results

We have accomplished an empirical study in order to determine
suitable values for the parameters λ (see Eq. (5)) and r (see Sec. 4).
In Fig. 5 the segmentation of two SAS images is shown, assuming
values 0, 0.1 and 0.5 for λ . A value r = 0.1 has been chosen. If λ =
0 only the boundary properties are considered. With λ = 0.5 both
regional and boundary properties have the same weight. While the
latter configuration is sensitive to noise, the former is too strongly
determined by the initialization. A good trade-off is λ = 0.1.

Fig. 7 shows the segmentation that corresponds to r =
{0.05,0.1,0.15}. Low values of r imply that most of the pixels are
used as seeds. Hence, the graph cut segmentation is too much influ-
enced by the ICM result and does not add any significant value. On
the other hand, if r is too high, too few seed pixels are considered
to estimate the pdf for the regional weights (see Sec. 3.1), which
might result in a poor performance. A good compromise is r = 0.1.

Five SAS images –about 30,000 m2– containing 378 man made
objects (128 cylinders and 250 spheres) have been used to test this
algorithm. The ICM based algorithm [1] has been systematically
applied. Beside the man made objects (class M), 1795 clutter re-
gions (class C) have been segmented. Fig. 8 shows 5 snapshots of
the SAS images, together with the ICM and the min-cut/max-flow
segmentation results. A value of λ = 0.1 has been chosen, and the
erosion structuring element is built with r= 0.1. The example in the
first row shows a high quality sonar image. The ICM segmentation
result is good and the graph cut segmentation is almost identical.
A dark background area is segmented together with the shadow in
the second example by the ICM algorithm. The initialization of the
graph cut algorithm with seeds that lay to the right of the highlight
region allows for distinguishing the shadow of the object highlight.
The spherical objects on row four lays on an uneven background
with sand ripples. The ICM algorithm segments some of the sand
ripples shadows together with the shadow of the highlight object
while the graph cut algorithm gets rid of them. The last example
contains a snapshot of the sonar images where no man made object
is present. Still, some clutter is segmented.
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Figure 5: Study on λ . The ICM segmentation result of two SAS images is compared with the graph cut results that stems from λ =
{0,0.1,0.5} assuming r= 0.1. The first example presents a poor segmentation for λ = 0 (result too strongly determined by the initialization).
The second example illustrates the degradation of the results due to a too high λ .
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5.2 Classification Results

Based on the classification system proposed in [2], optimal feature
sets matching both segmentation approaches have been found. They
consist of a combination of geometrical and statistical features for
both the shadow and the highlight. Fig. 6 depicts the ROC curve
for both algorithms, that is, the empirical probability of detection,
Pd (classification of M objects as M) vs. the probability of false
alarm, Pfa (classification of C objects as M). For Pfa > 0.3, the
difference in Pd is negligible. For low false alarms, however, the
graph cut segmentation produces higher Pd than the ICM approach.
If we fix Pfa = 0.025, which corresponds to 0.0015 false alarms
per squared meter (45/1795 C classified as M objects), the ICM
provides Pd = 0.87 (329/378 M detected), while Pd = 0.94 (355/378
M detected) for the min-cut/max-flow segmentation. Notice that no
distinction has been done between spherical and cylindrical objects.

6. CONCLUSION

Assuming a Markovian image model, a computationally efficient
implementation of a graph cut algorithm has been employed to seg-
ment a SAS image database. It is the first time that this algorithm
is utilized for sonar applications. We have proposed a novel initial-
ization of the graph based on the result of the ICM based algorithm
proposed in [1]. Several regional and boundary properties and their
influence on the segmentation have been investigated. A compar-
ison between the graph cut and the ICM results has been accom-
plished. If the image quality is high and the background is uniform,
the ICM algorithm already provides satisfactory results. In the case
of uneven sea bed, however, applying the graph cut significantly im-
proves the ICM results, increasing the probability of detection up to
7 % for a fixed false alarm rate.
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Figure 7: Study on r. The ICM segmentation result of two SAS images is compared with the graph cut results for r = {0.05,0.1,0.15} and
λ = 0.1. The graph cut result for the first examples is very close to the ICM solution for r = 0.05. For higher values of r, the result differs
and is more convenient for further classification purposes. Both examples show a poor segmentation for high r values (r = 0.15).
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Figure 8: ICM segmentation algorithm vs. graph cut based segmentation algorithm for 5 snapshots of SAS images. The parameters λ = 0.1
and r = 0.1 have been chosen.
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