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ABSTRACT

We address a parametric waveform design approach for im-
proved detection of a Gaussian point target, which is embed-
ded in signal-dependent clutter and noise. Unlike canoni-
cal waveform design schemes, the proposed transmit wave-
form is represented as a weighted sum of discrete prolate
spheroidal sequences. In the optimization problem, the de-
tection performance is maximized with respect to the weight-
ing factors of the discrete prolate spheroidal sequence un-
der the transmit energy constraint. The main benefit of the
proposed approach is the direct acquisition of the optimal
waveform rather than its energy spectral density. Simula-
tion results demonstrate the merits and demerits of the para-
metric waveform design approach in contrast to a canonical
approach. Furthermore, the superiority of the discrete pro-
late spheroidal sequences in parametric waveform modeling
is exemplified.

1. INTRODUCTION

Optimal waveform design is a key technique in numerous
engineering applications including radar, sonar, and commu-
nication systems. The ability to design the transmitted wave-
form in an optimal way strongly improves follow-on tasks
such as target detection or classification and will play a key
role in the future system design [1].

In modern radar systems, an optimal waveform is fre-
quently used to meet the ever increasing demands of im-
proved performance in target detection and identification. A
manifold of work has been done in the past for this purpose.
In [2], two optimal waveform design schemes for extended
target detection in noise only environment are proposed. In
the first approach, both target and noise are modeled as Gaus-
sian random processes. Based on this model, the mutual
information (MI) between the ensemble of target impulse
response and the receiver filter output is maximized. Con-
sequently, the waveform obtained is called MI-based wave-
form. In the second approach, the target is assumed to be
deterministic. A signal-to-noise-ratio (SNR) criterion is then
used for the optimal waveform design. The waveform ob-
tained in this way is called SNR-based waveform. In [3], the
authors generalized the SNR-based waveform design tech-
nique by taking signal-dependent interference into account,
and an iterative solution was proposed.

There has been no analytical solution to the signal-
dependent noise problem, until Kay proposed an optimal
waveform design approach for the detection of a Gaussian
point target in [4]. A Neyman-Pearson (NP) detector is con-
structed for optimal detection. The detection performance of
this NP detector is subsequently optimized, which does not
lead immediately to the desired waveform, but rather to its
energy spectral density (ESD).

Many prevalent waveform design approaches, such as
those proposed in [2, 4, 5], arrive at the ESD of the desired
waveform rather than the waveform itself. In this paper, we
refer to them as nonparametric waveform design approaches.
In these approaches, the extra step for time series synthesis
results in degradation of the detection performance. In order
to conquer this drawback, we are motivated to parametrize
the transmit waveform as a weighted sum of basis sequences.
The detection performance is maximized with respect to the
corresponding weighting factors, and the desired waveform
is obtained immediately. This approach is referred to as para-
metric waveform design approach in the sequel.

The paper is organized as follows. In Section 2, we give
a short review of the discrete prolate spheroidal sequence
(DPSS), followed by the motivation for parametric modeling
of transmit waveform in Section 3. Section 4 defines the sys-
tem modeling and states the problem at hand. Kay’s nonpara-
metric waveform design approach is reviewed in Section 5,
followed by our parametric waveform design approach in
Section 6. Section 7 gives the simulation results. Finally,
Section 8 concludes the paper.

2. REVIEW OF DPSS

Consider a discrete time sequence v(n),n ∈ Z, of band-
width W with finite energy and a sampling interval ∆ t = 1.
Amongst all the sequences that are band-limited to the fre-
quency interval [−W,W ] with |W | < 1/2, Slepian sought in
[6] the one that maximizes the energy concentration

α(N,W ) =
∑N−1
n=0 |v(n)|2

∑∞
n=−∞ |v(n)|2

. (1)

During the calculation of this maximum, in total N DPSS’s
are calculated from the corresponding discrete prolate
spheroidal wave functions (DPSWF’s). The zeroth order
DPSS, which is calculated from the zeroth order DPSWF,
maximizes α(N,W ) in Eq. (1). DPSS’s are actually doubly
infinite sequences, but their subsequences of length N, are of
particular interest. In [7], these N subsequences were also
called DPSS’s and one method for generating them was pro-
posed. This method is shortly reviewed in the following.

Reconsider a sequence v(n),n = 0,1, ...,N − 1, with fi-
nite energy and a sampling interval ∆ t = 1. Amongst all
the sequences that are index-limited to [0,N−1], the authors
sought in [7] the one that maximizes

β (N,W ) =

∫W
−W |V (F)|2dF
∫ 1/2

−1/2
|V (F)|2dF

, (2)

where V (F) denotes the discrete time Fourier transform
(DTFT) of v(n). In the sequel, β (N,W ) is first transformed
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into the time domain, and then maximized with respect to
v(n). It is proven [7] that the sequence v(n), n = 0, ...,N−1
that maximizes β (N,W ) must also satisfy

N−1

∑
n=0

sin[2πW(n−m)]

π(n−m)
v(n) = λ (N,W )v(m), (3)

for m = 0,1, ...,N−1. Eq. (3) can be further reformulated in
matrix form as

Av = λ (N,W )v. (4)

The candidate real valuedN-element column vector solutions
v are the eigenvectors of the N ×N matrix A. There are
in total N eigenvectors vk and their associated eigenvalues
λk(N,W ) for k = 0,1, ...,N− 1. The elements in the vector
vk construct the k-th order DPSS vk(n;N,W ), and the eigen-
value λk(N,W ) indicates the energy concentration defined in
Eq. (2).

In the following, some important properties of DPSS are
summarized from [7], they are:
1) When the N eigenvectors are normalized, they satisfy the
following orthonormal property

v
T
i v j =

N−1

∑
n=0

vi(n;N,W ) · v j(n;N,W ) =

{

1 i = j
0 i 6= j

(5)

for i, j = 0,1, ...,N−1.
2) These N eigenvectors form a basis for the N-dimensional
Euclidean space.
3) The eigenvalue λk(N,W ) is close to unity when k < 2NW ,
and close to zero when k > 2NW . The time-bandwidth prod-
uct 2NW is supposed to be an integer in our paper.

3. PARAMETRIC MODELING OF TRANSMIT

WAVEFORM

In [6], DPSS’s were applied to waveform representation.
That is, for large N if v(n) is band-limited to [−W,W ] and
concentrates most of the energy in the index set [0,N− 1],
then it can be well approximated by the weighted sum of the
first 2NW DPSS’s. This motivates us to model the transmit
waveform according to

z(n;c) =
2NW−1

∑
k=0

ck · vk(n;N,W ), (6)

for n = 0,1, ...,N−1. In Eq. (6), c = [c0,c1, ...,c(2NW−1)] is
a vector of weighting factors ck, which can take any com-
plex value. DPSSs have shown great superiority in paramet-
ric waveform modeling, since the number of basis sequences
2NW is tunable with W . Especially when W ≪ 1/2, i.e.,
2NW ≪ N, the savings of orthonormal basis sequences is
considerable for this modeling as compared to the most gen-
eral one given by

z(n;c) =
N−1

∑
k=0

ck ·φk(n), (7)

where φk(n)s are orthonormal basis sequences that span the
N dimensional Euclidean space. Since z(n;c) is parameter-
ized in c, we call it parametric waveform in our paper. In

the frequency domain, the DTFT of the parametric waveform
z(n;c) is defined as

Z(F ;c) =
2NW−1

∑
k=0

ck ·Vk(F ;N,W ), (8)

whereVk(F ;N,W ) denotes the DTFT of the k-th DPSS. Note
that, in the following sections, we will use digital angular
frequency ω = 2πF, and denote Z(F ;c) newly as Z(ω ;c).

4. SYSTEM MODELING AND PROBLEM

STATEMENT

A simple receiver model is illustrated in Figure 1, where a
discrete-time signal model is utilized in order to facilitate
digital processing. As transmit signal we use the waveform
z(n), for n = 0,1, ...,N − 1, n ∈ Z. The target response is

composed of two parts. A stochastic part A ∼ NC
1 (0,σ2

A)

models the reflectivity of the target, where NC
1 denotes the

univariate complex Gaussian distribution. The determinis-
tic part δ (n) models the impulse response of the point tar-
get, where δ (n) stands for the kronecker delta function. The
clutter impulse response h(n) as well as the receiver noise
w(n) are modeled as discrete-time complex and stationary
Gaussian random process with zero mean and known power
spectral density (PSD) Chh(ω), and Cww(ω) respectively.
Throughout this paper, we assume that the real and imagi-
nary parts of a complex process are independent and identi-
cally Gaussian distributed real processes. Besides, the ran-
dom variable A and random processes h(n) and w(n) are all
independent.

In the absence of a target, the received signal r(n), n =
0, ...,N−1 is a superposition of receiver noise w(n) and clut-
ter return x(n)= h(n)∗z(n), where ∗ denotes the convolution.
When the target is present, we have additionally the target re-
turn A · z(n). The detection problem is hence formulated as a
binary hypothesis testing in the following.

H : r(n) = x(n)+w(n) (9)

K : r(n) = A · z(n)+ x(n)+w(n), (10)

for n = 0,1, ...,N−1.

5. NONPARAMETRICWAVEFORM DESIGN

In [4], a canonical nonparametric waveform design approach
was proposed for the same detection problem but using a
continuous time signal model. We will consider a similar
design approach for our model.

The finite Fourier transform and its properties [8] are
used for the derivation of an optimal NP-detector. The finite
Fourier transform of Y (n) is defined by

YN(ω) =
N−1

∑
n=0

Y (n)e− jωn, −∞ < ω < ∞. (11)

In the sequel, we denote the finite Fourier transform of w(n),
x(n), r(n) and z(n) by dw(ω), dx(ω), dr(ω) and Z(ω) re-
spectively.

If Y (n) is a complex and stationary Gaussian random
process with zero mean and PSD CYY (ω), it can be proven

that asymptotically for large N, YN(ω) ∼ NC
1 (0,N ·CYY (ω))

for any ω . Furthermore, for pairwise distinct frequencies
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Figure 1: Modeling the received waveform.

ωi = 2π i/N, for i = 0,1, ..,N−1, YN(ωi) are asymptotically
independent variables. These can be easily proven by ex-
ploiting the properties of the finite Fourier transform intro-
duced in [8, Chap.4]. Considering the vectors

dr = [dr(ω0), ...,dr(ωN−1)]
T

dx = [dx(ω0), ...,dx(ωN−1)]
T

dw = [dw(ω0), ...,dw(ωN−1)]
T

Z = [Z(ω0), ...,Z(ωN−1)]
T ,

the detection problem can be expressed in the frequency do-
main as follows:

H : dr = dx +dw (12)

K : dr = A ·Z+dx+dw. (13)

Since vectors A ·Z and dx and dw are all multivariate com-
plex Gaussian distributed and independent, we have

H : dr ∼ NC
N (0,T0) (14)

K : dr ∼ NC
N (0,T1), (15)

whereNC
N denotes the N-element multivariate complex Gaus-

sian distribution. The covariance matrix T0 is given by

T0 = E
[

(dx +dw)(dx +dw)H
]

. (16)

T0 is a diagonal matrix with the i-th diagonal element
equal to [T0]ii = N · (Cxx(ωi)+Cww(ωi)), where Cxx(ωi) =
Chh(ωi)|Z(ωi)|2. Analogue to T0, T1 can be calculated ac-
cording to

T1 = E
[

(A ·Z+dx+dw)(A ·Z+dx +dw)H
]

= T0 +σ2
A ·ZZ

H . (17)

Having T0 and T1, we can easily express the log-likelihood
ratio and further find the test statistic

T (dr) =
∣

∣Z
H
T

−1
0 dr

∣

∣

2
. (18)

In Eq. (18), the kernel R = Z
H
T

−1
0 dr is a linear trans-

formation of the complex Gaussian random vector dr, thus a
complex Gaussian random variable. Besides, R differs only
in variance under the two hypotheses. In [4], the probability
of detection PD is proven to relate to a given probability of
false alarm PFA according to

PD = P

1

1+d2

FA , (19)

where d2 is dependent on the variances of R under both hy-
potheses. Based on our signal model, d2 in Eq. (19) is given
by

d2 = σ2
A

N−1

∑
i=0

|Z(ωi)|2
N (Chh(ωi)|Z(ωi)|2 +Cww(ωi))

, (20)

where |Z(ω)|2 is the ESD of the waveform z(n), and it is
denoted as Ez(ω). For the waveform design, we perform
the following approximation. Assume N is large and ∆ω =
2π/N, Eq. (20) can be approximated by

d2 =
σ2
A

∆ω

N−1

∑
i=0

Ez(ωi)

N (Chh(ωi)Ez(ωi)+Cww(ωi))
∆ω

≈ σ2
A

2π

∫ 2π

0

Ez(ω)

Chh(ω)Ez(ω)+Cww(ω)
dω . (21)

For a given PFA, PD increases monotonically with d2, thus we
maximize it under the energy constraint

1

2π

∫ 2π

0
Ez(ω)dω ≤ Ez, (22)

where Ez is the maximal available transmit energy. The op-
timization problem can be resolved by the Lagrangian multi-
plier method. As a result, the ESD of the optimal waveform
that leads to the global maximal d2 is given by

Eopt
z (ω) = max

(

√

Cww(ω)/λL−Cww(ω)

Chh(ω)
,0

)

, (23)

where the parameter λL can be found by meeting the energy
constraint. Durbin’s algorithm is then utilized to synthesize

the nonparametric waveform znp(n) from E
opt
z (ω).

6. PARAMETRIC WAVEFORM DESIGN

The disadvantage of the nonparametric waveform design ap-
proach from Section 5 is illustrated in Figure 2. An extra step
is needed to synthesize the actual optimal waveform from
the obtained ESD. During this additional synthesizing step,
a loss in performance generally occurs. The proposed para-
metric method on the other hand can be formulated as an
optimization problem to directly yield a transmit waveform
which is close to the theoretical optimal waveform. In this
way, the performance loss can be successfully remedied.

In this section, we use the parametric waveform z(n;c)
derived in Eq. (6) as transmit signal. Following the steps
described in Eq. (12) to Eq. (22), we can formulate the opti-
mization problem with respect to c as follows:

max
c

σ2
A

2π

∫ 2π

0

Ez(ω ;c)

Chh(ω)Ez(ω ;c)+Cww(ω)
dω (24)

s.t.
1

2π

∫ 2π

0
Ez(ω ;c)dω ≤ Ez, (25)

The optimization problem formulated in Eqs. (24)-(25) can
not be solved by the Lagrangian multiplier method anymore.
Thus, no closed-form solution for the weighting factors ci,
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Figure 2: Comparison between parametric and non-
parametric waveform design approach.
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to the global maximal probability of detection.

i= 0, ...,2NW−1 can be obtained and the optimization prob-
lem has to be solved numerically instead. For a computer
based simulation, the integral expressions are replaced by

d2 ≈ σ2
A

N′−1

∑
i=0

Ez(ωi;c)

N′ (Chh(ωi)Ez(ωi;c)+Cww(ωi))
, (26)

and

1

N′

N′−1

∑
i=0

Ez(ωi;c) ≤ Ez. (27)

where N′ ≫ N. The reasons for optimizing Eq. (26) rather
than Eq. (20) are as follows. Firstly, d2 in both expressions
are approximately equal. Secondly, the ESD of the waveform
Ez(ω ;c) should be optimal for every frequency grid ωi =
2π i/N′,N′ → ∞, not only for the finite N grids ωi = 2π i/N.

The objective function derived in Eq. (26) is a summa-
tion of ratios, whose numerator and denominator are both
quadratic functions of c. Furthermore the constraint func-
tion in Eq. (27) is also a summation of quadratic functions of
c. Thus, the whole optimization problem shows high nonlin-
earity. Besides, the number of optimization variables 2NW
is normally large. According to [9], such a large scale non-
linear problem can be solved efficiently by the interior point
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Figure 4: Magnitude of the parametric waveform z(n;c∗).

algorithm numerically. After the problem is solved, we ob-
tain a vector solution c

∗ and the desired parametric waveform
z(n;c∗) at the same time.

7. NUMERICAL RESULTS

We consider a simulation scenario with a system band-
width B = 5000 Hz. The baseband transmit waveform is
defined within | f | ≤ 2500 Hz using a sampling frequency
fs = 5000 Hz. The PSD of the clutter impulse response
Chh(ω) = 1 watts/(Rad/Sample) and the PSD of the noise
process Cww(ω) in one principle period [−π ,π ] is given by

Cww(ω) = 1 +
4

∑
k=1

Pk · exp[−(ω−ωk)/2ωB], (28)

where P1 = P2 = 1500, P3 = 500 and P4 = 150. The cen-
ter frequencies are ω1 = −0.9π , ω2 = 0.9π , ω3 = −0.05π
and ω4 = 0.3π . ωB is set to 0.016π . The reflect factor
A ∼ NC

1 (0,20) and the energy of the transmit waveform is
set to Ez = 2 Joule. Under these assumptions, we can find

the ESD of the optimal signal E
opt
z (ω) according to Eq. (23),

which leads to the global maximal d2
opt = 4.91807. The Noise

PSD Cww(ω) and ESD of the optimal waveform Eopt(ω) are
plotted in Figure 3. Based on this model, parametric and
nonparametric waveforms will be designed in the following.

We start by demonstrating the performance of the pro-
posed parametric waveform design technique. In our sce-
nario, the noise is very large when |ω |>ωc = 0.8π , the clut-
ter is weak, and the available transmit energy is small. We
are assuming the a priori knowledge that no energy should be
distributed in the frequency band |ω |>ωc. Having this prior
knowledge, the parameter W for generating the DPSS’s is
chosen as W = ωc/2π = 0.4. Furthermore, the length of the
sequences is selected as N = 200. As a result, 160 DPSS’s
are generated to represent z(n;c) according to Eq. (6). In
total 40 orthonormal basis sequences are saved for DPSS
as compared with those from other orthonormal waveform
families. The initial value of the to be optimized vector c

is set to 1 + 1 j, where vetcor 1 is of dimension 2NW and
contains all ones. N′ is set to 1024. Subsequently, the op-
timization problem is resolved with respect to c via the in-
terior point algorithm. As a result, a vector solution c

∗ is
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obtained and the corresponding d2
p = 4.91800. Placing c

∗

into Eq. (6) we can immediately obtain the desired paramet-
ric waveform z(n;c∗). The optimal waveform z(n;c∗) and its
ESD Ez(ω ;c∗) are shown in Figure 4 and 5, respectively.

Next, the nonparametric waveform design approach is
considered. A nonparametric waveform znp(n) is synthesized

from E
opt
z (ω) via Durbin’s algorithm. Within this algorithm

an exceedingly higher order autoregressive filter model is se-
lected for better synthesis. The ESD of the waveform E

np
z (ω)

is presented in Figure 6. In this case d2
np = 4.90259 is ob-

tained. For a better comparison, the optimal ESD is also de-
picted in red in Figure 5 and 6. As can be seen, the ESD of
the nonparametric waveform shows ripples and a poor per-
formance in the narrow frequency band around 0.15π . While
the ESD obtained via the parametric waveform design clearly
shows a better fit.

We now compare the detection performance for our para-
metric waveform with the nonparametric waveform and tra-
ditional impulse waveform with the same time duration and

energy. The impulse waveform is defined by zimp(n) =
[
√
Ez,0, ...,0]. For zimp(n), we have d2

imp = 3.66468. Suppose

PFA = 0.1, take the resultant d2 for each designed waveform
into Eq. (19), we can obtain the probability of detection

P
opt
D = 0.677682 P

p
D = 0.677679

P
np
D = 0.676991 P

imp
D = 0.610412

As can be seen, the proposed parametric waveform design
approach yields a probability of detection P

p
D that is slightly

higher than the one obtained by the nonparametric waveform
design approach and is closer to the global maximum.

8. CONCLUSION

We have proposed to parametrize a transmit waveform as a
weighted sum of discrete prolate spheroidal sequences. An
optimization problem is maximized with respect to the wave-
form parameters and as such yields the optimal waveform.
The advantage of the proposed waveform design method as
compared to nonparametric approaches is the fact that the
optimization problem directly yields the transmit waveform
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Figure 6: ESD of the nonparametric waveform znp(n).

rather than its ESD and thus saves the extra step for wave-
form synthesis. The obtained waveform ESD as well as the
obtained detection performance outperform the existing non-
parametric approach and are closer to the ones obtained by
using the theoretically derived optimum waveform.
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