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ABSTRACT 

Classification of targets by radar has proved to be notori-
ously difficult with the best systems still yet to attain suffi-
ciently high levels of performance and reliability. In this 
paper we take cues from nature to propose and examine a 
novel approach to target classification, based on diversity, 
as applied in the waveform processing domain. In the new 
approach, data is processed in multiple, different, forms, in 
parallel. The two forms that we have exploited in this work 
are the time and space domains. Most classification and 
Radar image analysis algorithms handle Radar data in the 
space domain only. Using simulation studies, we first show 
that phase or k-space data contains additional information. 
It is also shown that, counter-intuitively, having a sharp 
spatial Radar image (with reduced side-lobes) in fact wors-
ens classification performance. Lastly, the proposed archi-
tecture is validated against a traditional, unitary based clas-
sification scheme. 

1. INTRODUCTION 

Robust and reliable target classification using radar systems 
has long been a goal of researchers. However, this has re-
mained somewhat elusive. The complexity of the scattering 
environment together with target echoes being extremely 
aspect sensitive combine to make this a highly challenging 
task. Nonetheless, there have been very creditable attempts, 
primarily exploiting very high resolution in either or both 
range and cross range. These utilize a variety of processing 
approaches including statistical, Artificial Intelligence and 
pattern recognition. Many of these approaches are summa-
rized in the excellent texts by Rihaczek [1] and Tait [2]. 
More recently, the concept of cognition has been advocated 
as offering new and improved performance for radar in a 
variety of ways [3]. Cognition means ‘knowing’ and can be 
thought of as the process by which we know about the world.  
Here we develop an approach that tends towards synthetic 
cognition, utilizing two major characteristics that exploit 
waveform diversity. Firstly, the sensor parameters to be 
transmitted should be variable, so that they can be altered to 
acquire the most useful information. Secondly, the setting of 
those parameters and the collection of sensor data is carried 
out using prior information regarding the object or scene 
under observation, as well as the sensor data collected in 
previous time intervals. In this way we invoke the concepts 

of the functioning of biological memory in a much wider 
sense than normally used. Of course, this is all done to 
achieve a desired goal. We note here that the definition of 
cognitive behaviour, and, when can a system be called cogni-
tive, are still areas of intense debate [4]. Hence, what we are 
really doing is to take different cues from cognitive and bio-
inspired mammalian systems (such as the human being and 
the bat) and applying them in the field of radar sensor pro-
cessing, with the aim of enhancing performance. In a strict 
sense, such a system can at best be called smart, bio-inspired 
or adaptive.  
In this paper we introduce a new form of processor in which 
echo data is manipulated in a number of parallel channels, 
allowing forms of differing information to be extracted in 
multiple domains, such as time (i.e. high range resolution 
profiles), frequency and space. We take cues from many 
sources, for example, noting that bats use frequency modu-
lated waveforms suggest that they are able to recognize tar-
gets from spectral notches and peaks in the complex echo 
[5,6].  Vespe et al. [7] show that spatial diversity improves 
classification performance, by acquiring data from multiple 
independent looks (spatial diversity). The results of extract-
ing information in parallel data channels combined with 
those stored in memory enable  an estimate to be derived, 
from which a classification decision can be made. A declara-
tion of a correctly classified target is only made if the esti-
mate exceeds a given threshold. If not, the processor evalu-
ates the information to determine any short-fall and adjusts 
the radar parameters to collect revised information (e.g. more 
precisely estimating target length) against a chosen threshold. 
This process continues until a decision can be made. 
The rest of the paper is organised as follows: the next sec-
tion deals with simulation results which establish the fact 
that phase or k-space domain data contains useful infor-
mation about the scene which is not captured well in the 
amplitude or space domain. We also show that the often 
ignored sidelobes in radar data possess information which 
helps in target recognition. The section following describes 
the new ATR architecture and the experimental setup. Sub-
sequently the results from the ‘cognitive’ processor are dis-
cussed andthe paper ends with a some thoughts as to the 
future possibilities of this new form of processing  architec-
ture for ATR.  
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2. PROCESSING DOMAIN AND INFORMATION 
CONTENT 

For target recognition, Radar engineers have, in the main, 
utilized high range-resolution (HRR) profiles or high-
resolution synthetic aperture radar (SAR, also inverse SAR) 
images also that provide cross range information. Tradition-
ally, space domain data has been given more importance and 
a crisp HRR profile or SAR image is preferred to a signal 
representation with poor side-lobes. In this section, we in-
troduce a few simulation exercises which show that phase or 
k-space domain data sometimes can have information which 
is missed in the space domain. We also show that ignoring 
and suppressing side-lobes may result in an image with 
greater visual appeal but may worsen the ATR performance. 

 
2.1 Space and frequency domain data 

We synthesized a scene consisting of three clusters of 
scatterers. In each cluster there were four basic scatterers i.e. 
a dihedral, a corner-reflecter, a cylinder and a sphere. We 
have simulated these for a bandwidth of 500MHz, centered 
around 5GHz. Four different scenes were simulated, such 
that each scene has the three clusters at the same positions 
but consisting of different types of scatterer. Each cluster 
occupies only one resolution cell in the space domain, so that 
it will appear as a single, strong scatterer. The detailed mod-
elling steps can be found in [8]. Figure 1shows the response 
from the targets in the space and frequency domains. As can 
be observed, although the space domain shows just three 
scatterers, the frequency domain displays completely differ-
ent behavior for each of the scenes. This indicates that the 
frequency domain can help provide another dimension of 
discriminating information about the scene which can poten-
tially be used to enhance the classification performance. Note 
that the frequency domain is only complimentary to the space 
domain, and both the domains need to be analysed using 
different processing approaches. This gives us the motivation 
to propose the waveform processing-diversity strategy for 
ATR. 

 
Figure 1 – Data from four different scenes in the space 

and frequency domain. The top four plots show the data 
in the space domain and the lower four plots show the 

corresponding data in the phase domain  
 

2.2 Sidelobe and ATR 
In a second set of simulation exercises, we show that the 
information contained  in sidelobes is also potentially im-
portant for classifying targets.  Generally, the sidelobes in an 
HRR profile or a SAR image are suppressed in the prepro-
cessing stage. However, as shown in the last subsection, the 
information associated with the major scattering centers is 
not always sufficient to characterize the target. Some classi-
fication-specific information may also be contained in the 
side-lobes. To validate this, we ran ATR simulations on the 
MSTAR [9] dataset for five of the  targets. Then we applied 
various sidelobe reduction algorithms [12,13] to ‘improve’ 
the images. The naive nearest neighbour classification algo-
rithm has been used to classify the targets [15]. Details con-
cerning the confusion matrix derivation can be found in a 
paper by Mishra et al.[16]. As can be seen from Figures 2 
and 3, suppressing the sidelobes does enhance the appear-
ance of the SAR images. However, this also deteriorates the 
ATR performance, as evidenced by the confusion matrices 
corresponding to the figures. This shows the importance of 
sidelobes for ATR. However, if the sidelobes are to be pre-
served, the intelligibility of the mainlobes will reduce. 
Hence, a way to have both the sidelobe and the mainlobe 
information is to process the data in both the space and fre-
quency domains. 
 

3. SYSTEM ARCHITECTURE FOR WAVEFORM 
PROCESSING-DOMAIN ATR 

Figure 3 shows a schematic of the proposed architecture. It 
is important to understand that this form of processor is 
rooted in observations of mammalian  systems such as Bats 
and Dolphins that use echo location. However, it can be de-
signed analytically and this, ultimately, will provide rigour 
in the generalisation of such processing approaches. Second-
ly, such an architecture, although presented here for radar 
based target recognition, can successfully be extrapolated to 
a broader set of sensing and motor systems which try to em-
ulate human behaviour. 

The major blocks (each representing a sub-system of the pro-
posed architecture) are as follows.  

1. Radar platform: This block represents the sensor-
platform and is also responsible for any preprocessing 
required for the signal collected by the platform. 
Once the diversity decisions are made, this block has 
the responsibility to change the parameters of opera-
tion accordingly I.e. the emitted waveforms, platform 
location, etc. In the current work, we have dealt with 
angular diversity only.  

2. Range domain processing: This block handles the 
processing of the range profiles  as collected from the 
sensor platform.  

3. Frequency domain processing: This block handles 
the processing of the data in the frequency domain.  
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4. Confidence calculation: This block handles the fea-
tures and information collected from the above two blocks to 
make a decision regarding the type of target in the scene 
along with a confidence with which this decision is made. 
This confidence level representation 

 
 Tg1 Tg2 Tg3 Tg4 Tg5 

Tg1 211 1 20 41 1 
Tg2 4 258 4 2 6 
Tg3 11 4 222 10 26 
Tg4 18 1 8 242 5 
Tg5 2 15 9 4 244 
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Figure 2 Effect of windowing on image quality and on classifi-
cation performance. Top to down: Sample of original SAR image; 
after Hamming windowing; after nonlinear apodization [12]; after 

refined nonlinear apodization [13]. 

can be in terms of a continuous variable such as probability, 
or, in terms of simple discrete levels such as  CONFIDENT 
or NOT CONFIDENT.  

5. Memory: Memory description and usage is a crucial 
part for any automated system endeavouring to be-
come cognitive. However, in the form of processor 
invoked here, the current memory block only supplies 
prior test-phase based information to block 4 and 
block 6.  

6. Decision maker: This block takes the decision regard-
ing whether to go for a fresh collection of data from 
the scene or not, and, deciding what diversity is to be 
employed for the fresh data-collection step.  

Note that the fifth block is the memory block containing both 
short and long term memory consistent with biological ob-
servations. Further details of the algorithm can be found in a 
paper by Mishra et al.[14]. 
 

 
Figure 3: The processing architecture 

 
3.1 Description of experimental setup and algorithm 

 
Simulated echo data have been created from two sources. 
The first is via analytical solutions for the EM scattering 
from simple targets (spheres). The second is via a computa-
tional EM simulation tool FEKO [10,11]. These provide the 
source of raw data to be interrogated by the cognitive pro-
cessor. In the first case, simple targets have been chosen to 
help provide a physical insight as to the scope of improve-
ment in classification performance. Firstly we consider only 
the azimuth angle variation capability of the system and 
investigate the algorithms to be used in the central processor 
and the potential performance enhancement, as compared to 
traditional range profile based target recognition systems. 
Secondly, we investigate the potential of using the phase 
part of the frequency response of the target. For a linear FM 
radar the raw signal in k space is the frequency response of 
the target. 
 
  

4. PROCESSING AND RESULTS 

The first phase, where the ATR capabilities of the newly pro-
posed architecture were tested, was limited the diversity to 
azimuthal angle variations only. For a given pose, the system 
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calculates the possible class of the target. It also supplies a 
confidence level to this decision. Depending upon this confi-
dence level a decision is made regarding if a further profile to 
be collected for a different orientation of the target, i.e. from 
a different azimuth-angle. The re-positioning of the radar 
allows for a different viewing angle from which additional 
information can be gleaned. This input is combined with 
previous pulses, using information stored in echoic memory.  

The long-term  memory is utilized if the radar recognizes the 
current scenario as having similar attributes to that of a pre-
vious case. This is used to change the bias weighting in the 
decision maker accordingly. The process is continued until 
either a classification decision is made with a desired confi-
dence, or, a maximum number of profiles have been checked, 
without being able to give the desired confidence level to any 
of the classes.  

In the limited simulation done to date, we have tested three 
types of data processing. In the first type, data in time/space 
domain, i.e. range resolution profile data, is handled. This is 
similar to conventional ATR processing methods. In the se-
cond type, both time and frequency domain data is handled 
simultaneously. This will be referred to as time-frequency 
domain algo 1. In the third type, decision is tried to reach 
with the desired confidence, using time domain data only. In 
case no single class scores the desired number of votes, then 
data in the frequency domain are processed to bolster the 
decision making. This will be referred to as time-frequency 
domain algo 2. The change of performance of classification 
for both the cases were plotted against the angle by which the 
consecutive perspectives differ (). The results are summa-
rized in Figure 4.  

We see that using both the channels (Blocks 2 and 3) 
gives better performance than using a single channel. The 
conventional algorithm of single perspective based ATR is 
when  = 0.  

Secondly, the performance was the best for a jump of 
around 5-8 degrees and using both the channels, give better 
performance. We note that on an average (median) profiles 
from three different perspectives are enough to give a deci-
sion with practical confidence level. For each , the median 
number of perspectives taken by the algorithms is also noted. 
Irrespective of the value of , the median number of per-
spectives was found to be 3. Secondly, as compared to the 
proposed variable perspective ATR scheme, if only two per-
spectives were used with, the performance was found to be 
85%. Hence, the bio-inspired framework performs better than 
both the single perspective ATR scheme, as well as the fixed-
number, multi-perspective based scheme. 

An anomaly in the result is the observation that for  = 
0 the conventional algorithm performs better than Algorithm 
2. This is mainly because, with  = 0, there is no extra spa-
tial formation added with iteration. Handling the information 
from the two channels may also confuse the classifier. This 
negative effect is substantial enough for Algorithm 2 so as to 
make it perform worse than the conventional algorithm. 

 

  
Figure 4: Results from the proposed architecture as compared with 

conventional ATR algorithms 

5. CONCLUSION 

This research has introduced the concept of a highly dimen-
sioned, feed-back based processing architecture that has roots 
in observations of the operation of biological systems. A cen-
tral aspect is the use of waveform and spatial diversity to 
provide a richer information source from the scene under 
interrogation. We show that a successful ATR algorithm ben-
efits from both space and frequency domain processing of 
Radar data. Inspired by t,his we have proposed an ATR archi-
tecture which implements this waveform processing-domain 
diversity.  

We also show that the proposed architecture performs better 
than the established ATR algorithms. Note that the current 
work has only exploited a part of the proposed architecture. 
The architecture can be exploited in a more exhaustive man-
ner, which in turn, could provide enhanced ATR perfor-
mance. 
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