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ABSTRACT

Link adaptation mechanisms are viewed as one of the key
techniques for increasing the diversity order, robustness and
effectiveness of a wireless communication system. Tradi-
tional schemes are designed to increase the system capacity
and momentary transmission spectral efficiency. In this paper
we present a novel algorithm in which we co-design Adap-
tive Modulation and Coding (AMC), Hybrid ARQ (HARQ)
and power control in order to enhance the energy efficient of
packet delivery. Our goal is to reduce the overall transmis-
sion energy consumption while meeting the QoS constraints
of heterogeneous application services. Our analysis reveals
how the proposed approach permits to achieve notable en-
ergy gain over traditional adaptive mechanism design.

1. INTRODUCTION

Telecommunication has experienced tremendous success
causing proliferation and demand for ubiquitous heteroge-
neous broadband mobile wireless communications. Up to
now, innovation has targeted to improve wireless networks
coverage and capacity while meeting the QoS for users ad-
mitted in the system. Nowadays, the number of mobile sub-
scribers equals more than half the global population. Fore-
cast on telecommunication market assume an increase in sub-
scribers, per subscriber’s data rate and, the roll out of ad-
ditional base stations for next generation mobile networks.
The undesired consequence is the growth of wireless net-
work’s energy consumption which will cause an increase of
the global carbon dioxide (CO;) emissions and, impose more
and more challenging operational cost for operators. Com-
munication energy efficiency represents indeed an alarming
bottleneck in the telecommunication growth paradigm.

Recently, increasing maturity of mobile technology in
combination with the growing amount of equipment de-
ployed each year has woken up the need of innovating in the
field of energy efficient communications. Energy efficient
enhancement in wireless communication can be achieved
only if improvements are experienced in the whole commu-
nication chain for different operational load scenarios. Sev-
eral investigations are on going on this research area, ranging
from energy efficient cooling of base stations, to innovative
energy efficient deployment strategies and frequency plan-
ning [7] [2] [3].

Information theorists have studied energy-efficient trans-
mission for at least two decades [5] [13]. The work in [5] de-
fines reliable communication under a finite energy constraint
in terms of the capacity per unit energy, which is the maxi-
mum number of bits that can be transmitted per unit energy.
This definition ensures that for any transmission rates below
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the capacity per unit energy, error probability decreases ex-
ponentially with the total energy.

With this paper we investigate how adaptive mecha-
nisms can be exploited to improve the energy efficiency
of wireless communications. More precisely, we focus on
Adaptive Modulation and Coding (AMC)[6], Hybrid Au-
tomatic Repeat Request (HARQ) and power control algo-
rithm, in order to improve the energy efficiency of trans-
mission. Classically, adaptive mechanisms aim at improv-
ing wireless packet transmission performance under Quality
of Service (QoS) requirements. Most of the time such QoS
constraints are imposed in terms of fixed packet error rate
target. QoS constraints limit indeed optimization potentials
of adaptive mechanisms. Moreover, while users may access
to resources with a variety of heterogeneous services such
as voice (VoIP), video, gaming, web browsing and others, in
adaptive mechanisms, target error rate are typically set to sat-
isfy the packet error rate constraints of the application which
has more stringent packet error rate requirement[8].

There have been lot of work in development of effi-
cient HARQ algorithms for wireless channels in last decade.
Ebert. et al[10] have proposed combined tuning of trans-
mission power and medium access control. Sun et. al[12]
proposed the energy efficient algorithm for HARQ under er-
ror constraints by adaptively changing the coding rate for
subsequent retransmissions according to channel conditions.
The impact of both circuit and transmit power on energy ef-
ficiency HARQ Type I has been studied in [11].

In our view, energy efficient correct delivery of packets
can be achieved by co-designing AMC, HARQ and power
control. The reduction of transmit power of each transmis-
sion increases packet error rate(PER), hence increased av-
erage number of transmissions for successful packet. How-
ever, increased transmit power of each transmission reduces
PER of each transmission, thus resulting in reduced average
number of transmissions for successful packet delivery. With
this paper we propose to adaptively achieve the optimiza-
tion tradeoff between power, spectral efficiency and delay,
by adapting at each transmission attempt of a packet, the risk
of unsuccessful packet delivery. QoS constraints of hetero-
geneous application services are taken into account in terms
of residual packet error rate after a pre-fixed number of max-
imum retransmission attempts. We call the proposed algo-
rithm Variable PER Adaptation.

The organization of the paper is as follows. The next sec-
tion introduces the system model followed by the problem
formulation in section 3. Section 4 shows the link level sim-
ulation results of the proposed algorithm. Finally, we con-
clude the paper with the discussion of conclusions and future
work in section 5.



2. SYSTEM MODEL

The system under consideration is an OFDM system with
frequency-division multiple access (FDMA). Perfect chan-
nel state information is assumed at both the receiver and
the transmitter, i.e., the channel gain on each chunk due to
path loss, shadowing, and multipath fading is assumed to
be known. Channel parameters are assumed to be estimated
by some other method, which is not specified in this paper.
The system does not employ spreading in either time or fre-
quency; each chunk can only be used by one user at any given
time. Chunk allocation is performed at the base station and
the users are notified of the carriers chosen for them. After
the allocation, each user performs power allocation and bit
loading across the chunks allocated to it to find the transmis-
sion power.

The transmitted symbol x is multiplied by fading channel
coefficient H, which is i.i.d rayleigh distribution, and then
subsequently added to White Gaussian Noise. We further as-
sume that noise, n is AWGN noise with mean 0 and variance
2. The received signal vector y is given by,

y=Hx+n @))

|

Hence, we can express SINR as, y = *~-. The input to

variable PER algorithm is this normalized chunk SINR, 7.
We assume that all the symbols within a packet undergo the
same fading to simplify the design of the algorithm. This as-
sumption assumes that the coherence time of the channel is
larger than the packet duration, which is true for slow fading
pedestrian cellular environment. The various system param-
eters are described in table 1

3. PROPOSED ALGORITHM: VARIABLE PER
ADAPTATION TO IMPROVE ENERGY
EFFICIENCY(EE) OF HARQ

Traditional link adaptation mechanisms are designed to track
fast and/slow variation of the transmission context in order to
maximize the momentary transmission rate while aiming at
meeting quality of service (QoS) constraints such as delivery
delay, residual PER (PER,.;), etc. Indeed, classically, link
adaptation and in general adaptive mechanisms targets’ are
the enhancement of the transmission spectral efficiency, re-
duction of delivery delay, improvement of transmission reli-
ability and avoidance of catastrophic transmission configura-
tions for which QoS is strongly reduced and communication
can drop for a long period. The reason for this is that after
a given maximum number of retransmissions, there is a tar-
geted residual PER, PER,.; which depends on overall service
tolerance on residual packet error rate. For the case of cel-
lular systems like LTE, the AMC selection criterion is set to
10% PER Target threshold for 3 maximum retransmissions.
The reason for this being that residual packet error rate in
this case is simply 10~#, which is adequate enough for most
applications like voice, video and data transfer[8]. However,
such an approach is inefficient in terms of energy consump-
tion of retransmissions. It should also be noted that different
applications require different residual packet error rate [1].
For example, voice/video conferencing applications typically
need a residual packet error rate of 1%, whereas streamed
video applications can tolerate residual PER as high as 5%.
In light of these observations, we believe target packet error
rate for different retransmissions can be adaptively optimized
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along with power control, AMC selection and the number
of retransmissions to reduce the system energy consumption
while at the same time meeting the application QoS require-
ments. We explain the algorithm for variable PER adaptation
for one chunk for easier understanding of the problem. The
main idea is to minimize average total power, F;j, of all the
transmissions subject to certain QoS constraints of the user.
The average total power, P}, is given by,
2

> favg
where PERj} = 1. The above calculation of P}, assumes
that the errors in multiple retransmissions of a packet are in-
dependent of each other and the channel does not change dur-
ing all the retransmissions. Hence, the optimization problem
can be formulated as follows:

st.1<i<Tr,

Try

)}

i=1

i—1
P"]PERY
k=0

P, =

avg —

2

min P”
m Ty, b '8

subject to
P" < Puax

Power Control without chase combining :
P"y > SINR"

Power Control with chase combining :

i
Y Pl'y> SINR}"
j=1
Residual PER constraint :
Try
PERyes < [ | PER;
i=1
PER; > PER; .1 Vi€ [1,Tr,]
QoS requirement :

PS" > B 3)

This problem formulation is only valid for chase
combining[4] in which sender transmits same informa-
tion (data and parity bits) for each retransmission. The
receiver then combines all the packets using maximal ratio
combining thus resulting in increased perceived SINR. Also,
the second constraint of residual PER indicates that PER
target of each subsequent transmission should be at least
or higher than the target used by previous transmissions.
This constraint ensures that power, P; calculation in step
7 of the algorithm (described later in the section) is pos-
itive. The optimal solution to the problem in equation 3
is non-trivial due to non-convex and discrete nature of the
problem. Nevertheless, we can find sub-optimal solution by
searching over a PER Target vector space and using some
optimizations to reduce the number of iterations required to
find the sub-optimal solution. Now, we describe the basic
steps of the sub-optimal algorithm, which solves the above
problem in sub-optimal way. The algorithm is comprised of
the following steps:

Step 1: Choose starting MCS, m such that

m= argmink{B > PSk}

Step 2: We first define a PER Target vector, PER;, over
which search is carried out to minimize PJ),. The ex-
ample vector that we use in our simulations is PER;, =



[PERy PER| PER; ... PER;)|. The search to find the right
PER!" for each transmission based on minimizing equation
2 according to channel and QoS constraints is a permutation
problem with 177« possible solutions (for the case of T#,,4.
maximum number of retransmissions). However, we employ
some optimization methods to reduce this search space to
speedup the algorithm.

Step 3: Find the SINRy; vector that corresponds to PER;, for
MCS m. SINRy is the minimum SINR threshold required to
achieve packet transmission with packet error rate PER;, for
MCS m. After that we delete the entries in PER;, and SINR;Z
vector which cannot meet the SINR threshold requirements.
Hence, each entry i of SINR], has to satisfy the following
constraint, SINR!" < yP,,... This can significantly reduce the
dimension of PER;, and SINR]; vector.

Step 4: Now, we build the permutation matrix based on the
reduced PER,, from previous step. Each row of the permuta-
tion matrix describes the sequence of target PER, PER!" that
should be selected for each of the transmission attempts. The
dimension of permutation matrix is /7"« X Tr,,,., where i’
is the new dimension of PER;, computed in step 3.

Step 5: We delete the rows in this permutation matrix
which cannot satisfy the residual PER constraint PER,,; <
HiT:”{ PER;. We also discard the rows in above-mentioned
permutation matrix for which the following constraint is not
satisfied, PER; > PER; | Vi € [1,Tr,]. It is possible that
PER;, vector matrix is null at the end of this step if channel
to the user is not sufficient to satisfy MCS, m computed in
step 1. If this is the case, we reduce MCS by 1 and goto first
step to restart the algorithm.

Step 6: Now, we compute the average power, Fy;, for all the
rows in permutation matrix as given in equation 2. Finally,
we select the row in Permutation matrix which minimizes
Fyy,- The reason is that after every failed transmission, we in-
tend to use lower PER Target for subsequent re-transmission.
Step 7: Finally, the power, P; for each transmission, i is com-
puted recursively for chase combining HARQ transmission
as,

 _SINRY
Y
i—1
pn _SINRY ~ L SINRY

’ Y
The above optimizations actually significantly reduce the
search space over which we can minimize Fy,.

4. SIMULATION RESULTS

In this section, we describe the link level simulation results
obtained for the simulation parameters in table 2. Here, it
is worth mentioning a note on the size and values chosen for
PER target vector, PER;,. The larger is the size of PER target
vector, the better is the Energy Efficiency(EE) gains possible
from the algorithm, but it comes at the cost of increased com-
plexity and time required to find the sub-optimal solution.
However, the smaller size of PER target vector, PER;; can
significantly reduce the EE gains possible from the Variable
PER adaptation. The proposed PER target vector in table 2
is the right compromise we found from both the EE gain and
implementation complexity point of view.

We place a UE randomly in a cell of radius 250m. Figure
1 shows the EE gain Vs UE downlink traffic compared to
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Figure 1: Energy Efficiency gain(%) Vs UE Downlink traffic
compared to PER;; = 10% for Residual PER, PER,.; = 0.01
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Figure 2: Spectral Efficiency Vs UE Downlink traffic com-
parison of PER,, = 10% and Variable PER for Residual PER,
PER,.; = 0.01
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Figure 3: Achieved throughput Vs UE Downlink traffic com-
parison of PER;, = 10% and Variable PER for Residual PER,
PER,,; =0.01



Table 1: System Parameters

Table 2: Simulation Parameters

Modulation and Coding Scheme (MCS) | m UE distance  from  BS, | {100,150,200,250}m
index D(UE,BS)

Distance of UE to BS D(UE,BS) Channel Rayleigh Fading Channel
Maximum no of allowed transmissions | T7ax Traffic model Constant bit-rate

Power per chunk for /" transmission us- | P" Distance-dependent path loss L =128.7+37.6log 10(R),
ing MCS m Rin km [9]

Target PER for transmission i for MCS | PER! Maximum no of allowed trans- | 4

m missions

Residual PER after all the re- | PERes Residual PER, PER s {0.01, 0.05}
transmissions Packet size of user to trans- | {90, 140, 190, 240, 290, 340}
Number of transmissions 1 < Try < Trmax mit/TTL, B

Packet size of user to transmit B Packet size corresponding to | See table 3

Average power of all the transmissions | Py, cach MCS

for MCS m Maximum Power allowed on | 0.8 Watt

SINR threshold for transmission i to | SINRY e?Ch chunk, Frax .

achieve PER Target PER; for MCS m Size of PER; g vector over which | 11

Packet size corresponding to MCS m pPS™ optimization is performed,

- I PER Target vector, PER;y {0.01, 0.05, 0.1, 0.15, 0.2, 0.25,
Maximum Power allowed on each | P,y 0.3,0.35, 04, 0.45,0.5}
chunk
Discrete values of PER target vector | PER;g
St?’amh space for optimization Table 3: Packet Size and Spectral Efficiency for MCS
Size of PER;g vector n MCS | Modulation | Coding Spectral Packet
Average power consumption of all the | A, mode Efficiency Size
transmissions (bits/sec/Hz) | (bits)

| QPSK 1/3 2/3 96

. . . 2 PSK 172 1 144

fixed PER;, = 10%. The EE gain plotted in figure 1 is given Q
by 3 QPSK 2/3 4/3 192
] 4 16-QAM 1/3 4/3 192
EE gain — P,(PER;; = 10%) — P,,(PER;, = Variable) 5 QPSK 34 30 216
Py (PER;; = 10%) w L8 16:QAM | 112 2 288
We plot the results of EE gain Vs UE downlink traffic for ! 64-QAM 13 2 288
users with varying distance from BS. 8 16-QAM 2/3 8/3 384
We can see from the figure that the UE closer to the BS 9 16-QAM 3/4 432
%ains much rr;lore1 in ;erms of EE tl;lan t}}:e UE {arther away 10 64-QAM 12 432
rom BS. It should also be noted that there is lot more EE T 64-QAM 3 576

gain for low-load scenarios than high-load scenarios. The

reason for this behavior is that whenever there is better chan- 12 64-QAM 3/4 972 648

nel compared to the spectral efficiency requirement of the
user based on downlink traffic, we have more degrees of free-
dom to optimize the target packet error rate. Hence, the UEs
which have better momentarily channel are more suited to
gain from the variable PER adaptation. The EE gain for low
load scenarios especially for UEs closer to the base-station
can be as high as 20%. The EE for high load scenarios is
very little due to the fact that high data rate requirement from
the application limits the degree of freedom available to the
algorithm to reduce power consumption.

We plot the spectral efficiency comparison of proposed
variable PER scheme compared to fixed 10% PER in figure
2. We note from this figure that while variable PER performs
slightly better in terms of spectral efficiency, but the two
schemes operate essentially on the same MCS most of the
time as spectral efficiency is computed directly from MCS
used in the simulation using table 3. This means that even
though variable PER selects the same MCS as that which is
required to satisfy PER;; = 10%, it adaptively adjusts the
PER;; of each transmission to improve EE of overall suc-
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cessful transmission of a packet.

We also plot the achieved throughput in figure 3 for
fixed PER Target of 10% and variable PER scheme. The
two schemes achieve almost same throughput, while variable
PER performs slightly better in terms of throughput perfor-
mance, especially at high load scenarios. The reason for this
behaviour is that variable PER algorithm is more spectral
and energy efficient compared to fixed PER;, = 10%. The
main explanation of this result is that especially in channel
instances when the channel does not suppport the minimum
MCS required due to the traffic requirement of the user(QoS
constraint in equation 2), the variable PER can select higher
MCS(than the one selected by fixed PER target=10%) with
higher target PER(> 10%).

We finally plot the EE gain Vs UE downlink traffic vary-
ing the PER,,; = 0.01 and PER,.; = 0.05 in figure 4. We
can see clearly that Variable PER performs slightly better for
higher Residual PER, PER,.; = 0.05 compared to PER,.s =
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Figure 5: Average number of retransmissions gain(%) Vs UE
downlink traffic for PER,.; = 0.05

0.01 as higher residual PER allows for more flexible adapta-
tion of PER for each transmission.

We also plot the gain in average number of retransmis-
sions Vs UE downlink traffic for the two schemes in figure 5.
The variable PER adaptation increases the average number
of retransmissions especially for users with high spectral ef-
ficiency, hence increases the delay of packets in the system.
But, this delay is acceptable as long as its below the tolerance
level desired by the application.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose to adapt the PER Target of each
transmission along with power control and AMC selection
to reduce the average power consumption of single link. We
show that UEs with good link conditions are poised to gain
more from variable PER algorithm as this allows more de-
grees of freedom for adaptation of algorithm parameters. The
variable PER algorithm improves the EE of system at the ex-
pense of increased average number of retransmissions and
this obviously increases the average delay experienced by
the application. Hence, variable PER algorithm exploits the
tradeoff between delay and energy consumption. The next
step of this work is to extend the algorithm to design multi-
user scheduling approaches which exploit such tradeoff be-
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tween delay and energy.
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