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ABSTRACT

In this paper, we propose a phase synchronization scheme
suitable for collaborative beamforming with wireless sensor
networks. The scheme does not require the BS to coordi-
nate the allocation of sensors to the training timeslots or
poll them individually (which can be burdensome for large
networks): sensors randomly choose their respective training
timeslots. In that sense, the synchronization scheme is de-
centralized. In this context, we ask ourselves whether there
exists an optimal number of training timeslots, and about
the optimal split for the training and data transmission pe-
riods. To answer this question, we analytically derive upper
bounds of the resulting beamforming gain in two scenarios of
interest: ideal, and noisy phase shift estimation. Computer
simulation results are mainly given in terms of (normalized)
beamforming gain and achievable throughput.

1. INTRODUCTION

In recent years, research in Wireless Sensor Networks (WSN)
has attracted considerable attention. Nowadays, WSN are
used in many industrial and civilian application areas, this
including process control, environmental monitoring, health-
care applications and home automation. Energy consump-
tion is one of the main issues in design of WSN. Sensor nodes,
which are mainly battery operated, are supposed to work for
long periods of time without having their batteries replaced
or its energy source renewed. Data transmission is one of
the most energy consuming tasks and, thus, specific commu-
nication schemes need to be investigated. The problem is
aggravated by the fact that, in many cases, sensors need to
convey their measurements to a distant Base Station (BS).
Sensor networks typically consist of a large number of sen-
sors deployed in a given geographical area. This allows us to
resort to (energy efficient) collaborative beamforming (CBF)
schemes by which sensors cooperate in the transmission of a
common message signal.

CBF schemes demand carrier frequency and phase syn-
chronization in order to form a beampattern with a stable
mainlobe. The authors in [1] proposed a simple CBF scheme
capable of achieving phase synchronization using only one bit
of feedback from the BS. This approach was generalized in
[2] by including simultaneous frequency and phase synchro-
nization. Another approach for CBF is given in [3], where
the authors show that by opportunistically selecting a sub-
set of sensor nodes whose carrier signals combine in a quasi-
coherent manner at the BS one can get substantial gains
with respect to single node direct transmission. In [4, 5] the
authors show that the main lobe does not depend on the
actual node locations.

On the one hand, the main drawback of the iterative
algorithms proposed in [1, 2] is that the number of itera-
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tions needed to attain a given percentage of the maximum
beamforming gain scales in the number of sensors. For large
networks, this can lead to substantial signalling overhead
(in particular, if phase synchronization needs to be carried
out periodically). On the other, the opportunistic selection
schemes proposed in [3] might lead to unequal energy con-
sumption over sensors which, in general, is not practical.

In this paper, we propose a decentralized phase synchro-
nization scheme in which sensors randomly choose their re-
spective training timeslots. The total duration of the train-
ing plus data transmission period is fixed irrespectively of the
number of sensors, which makes the iterative schemes pro-
posed [1, 2] unsuitable. Instead, we ask ourselves whether
there exists an optimal number of training timeslots, and
about the optimal split for the durations of the training and
data transmission periods. In our scheme, we let all sensors
participate in the beamforming process since, unlike in [3],
we count with mechanisms to pre-compensate the oscillator
phase offset and the channel phase shift.

2. SYSTEM MODEL AND PROBLEM
STATEMENT

Consider a WSN consisting of N sensor nodes randomly
placed over a disk of radius R according to a uniform dis-
tribution. The goal is to collaboratively transmit a common
message m(t) with E [[m(t)|*] = 1, to a BS located on the
XY plane at a distance D > R (i.e. far field conditions)
(Fig. 1). In order to save energy, sensors are in the sleep

BS

Figure 1: Wireless sensor network setup.

state (i.e. transceiver circuits are turned off) for most of the
time. When new data needs to be collected, the BS broad-
casts an RF signal. This beacon activates the energy detec-
tors in the sensor nodes and wakes them up again (see [6] for
details). After the sleep period, all transmitters are assumed
to remain frequency-locked to the reference carrier frequency
fe (i.e., negligible frequency drift). The phase offset of each
oscillator, however, is unknown, of a random nature, i.i.d.
over sensors and uniformly distributed. The analytical sig-
nal transmitted by the i-th sensor node reads:

s6(t) = wim(t) I, "
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Figure 2: Training and data transmission phases.

where w; = b;e? % denotes the corresponding complex trans-
mit weight (to be designed), and f. and v; ~ U (—n, 7) stand
for the carrier frequency and the phase offset, respectively.
The complex channel from the i-th sensor to the BS is de-
noted by h; = aie]wi, where a; and 1; account for the chan-
nel gain and phase shift associated to the Euclidean distance
between the sensor and the BS. Accordingly, the signal re-
ceived at the BS can be expressed as

N-1
r(t) = m(t)e’>™e > " aibed 0 L) (2)
=0

with w(t) ~ CN(0,02). Due to hardware limitations, the
transmit power at each sensor node is assumed to be constant
and, hence, the transmit weights read w; = e’% . We also
assume line-of-sight conditions between the sensor and the
(distant) BS which leads to a; = 1 for all sensors. Clearly,
the received signal strength (RSS) at the BS is maximized
when the individual signals are coherently combined, namely,
i + i — 0; = C; Vi (where C is a constant, for example 0).
To that aim, sensors must pre-compensate the (unknown)
oscillator and channel phase offsets by properly adjusting
the 6; term (0; = &; in Sec. 3, while &; is estimated using
ML phase estimator in Sec. 4). Consequently, a training
period prior to data transmission is needed.

2.1 Communication protocol

Upon BS request, nodes wake up for T' seconds during which
a data packet will be transmitted. Typically, T is predefined
and turns out to be a small percentage of the time elapsed
between consecutive requests (i.e. low duty-cycle). Within
this period of time, sensors need to (i) estimate 6;; (ii) share
the common message m(t); and (iii) actually transmit the
message. For simplicity, we assume that (ii) is carried out
transparently to (i) and (iii) and, hence, the packet consists
of one training block and one data transmission block only.
Their respective durations are Tr and Tp, with T' = Tr+Tp.
The training block, in turn, consists of M timeslots of du-
ration Ths (see Fig.2). Each timeslot is used by a sensor
(or group of sensors) in order to estimate the correspond-
ing pre-compensation phase. In order to relieve the BS from
the burden of allocating sensors to timeslots', we allow sen-
sors to randomly choose training timeslots according a uni-
form distribution, namely, p; = 1/M; 7 =0...M — 1. Let
S; denote the subset of sensors in timeslot j of cardinality
|S;| = Nj. Clearly, N; is a binomial random variable and

it fulfills Z;Vigl N; = N. Whenever N; > 1, the phase pre-
compensation will be carried out for the group of sensors
rather than for individual ones. Because of that, the overall
received signal strength in the subsequent data transmis-
sion period will be lower. However, arbitrarily increasing
the number of timeslots M (to avoid sensors to overlap) is
detrimental, as well. The amount of information conveyed

(i.e., throughput) in the transmit period is given by:

R(Tp) = Tp log, (1 + M) . @)

o

INote that, in realistic settings, the BS should first learn about
which sensors woke up. Since the number is potentially large, the
associated signalling needs would also be.

If Ths is pre-defined, then increasing M results into a shorter
data block (Tp = T — M - Ta) and, consequently, lower
throughput. If, on the contrary, the duration of the training
period is fixed, then timeslots become shorter (Ty = TWT)
which results into poorer phase estimates (and, thus, lower
RSS in the data transmission period). Consequently, the op-
timal split between the training and data transmission pe-
riods, and the optimal number of timeslots in the training
phase should be identified. A more detailed analysis follows.

3. RSS ANALYSIS: IDEAL PHASE SHIFT
ESTIMATION

In the training period, sensors merely transmit an unmod-
ulated carrier. From (2) and by defining ¢; = 7; + 15, the
received signal in the j-th timeslot reads:

r(t) =N "% pw(t); € [T, (5 + 1)Tar) (4)
i€S;

The summation term can be conveniently expressed as

Z e/? = RSS,e’%i (5)

ies;
with RSS; > 0 denoting the received signal strength in j-th

A

Figure 3: Aggregated phase shift in a training slot.

timeslot® and ¢; standing for the aggregated phase shift (see
Fig. 3). For the time being, we assume that &; can be per-
fectly estimated and fedback to all the N; sensors in timeslot
j. Upon completion of the training period, each sensor node
pre-compensates its carrier phase by setting 6; = &;;Vi € S;
and, hence, the received signal strength during the data
transmission period yields:

M-—1
RSS =" > @it (6)

J=0 i€S;
and the expected value of the normalized RSS then reads

=== 1

SS = E ~_1[RSS). (7)

167D e T
From (5), it follows that Ziesj e?(%i=8) = RSS; € {R*,0}.
If, in addition, we define &y = {gbi}fy:gl then we can write:

M-—1
=== 1

SS =5 > Enj ey [RSS;], (8)
=0

2Time synchronization is already achieved.
3For simplicity, the contribution of the additive noise to the
resulting RSS will be neglected throughout this paper.
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where:

ENJ‘,@N [RSS;] =
=By || 3 @)
=
=En; oy 3 @6 3 g8
kES; lES;
=Enj oy | [Ni+ D> D ei@u—o0 )
keS; l€S;
1£k
=En; oy N; + Z Z IR {ei 9k =91}
keS; l€S;
L 1>k
=En;,on N; + Z ZQcos(qbk—qbl)
kGSj lGSj
L 1>k

The expectation in this last expression is difficult to com-
pute in closed form. Hence, we resort to the following upper
bound:

]ENj7<I)N [RSS;] <

10
= ]ENj N + Z Z 2K, .4, [cos(px — P)] | (10)
kES; €S,
1>k

which follows from Jensen’s inequality and the fact that N; is
statistically independent of ® . With the change of variables
z = ¢, — ¢1, the inner expectation term yields

E¢, .4, [cos(¢r — ¢1)] = Ez[cos(z)] = L /7r cos(z)dz = 0.

2r J_ .

(11)
which follows from the fact that z is uniformly distributed
in [—7, 7] since so are both ¢y and ¢;*.

From (10) and (11), we conclude that the contribution
of the sensors in the j-th slot to the resulting RSS can be
upper-bounded as follows:

Ex, oy [RSS;] < Ex, [m] . (12)

and, hence, the normalized RSS of (8) can in turn be upper-
bounded by:

RSS < %ENJ. [\/FJ] : (13)

Unfortunately, this expectation can not be computed in
closed-form and, as such, is not very informative. We can
gain some insight by letting M and N grow without bound
at a constant ratio a = % In this case, the (binomial) ran-
dom variable Nj is well approximated by a Poisson r.v. of

4The pdf of z = ¢;, — ¢; is given by the convolution of the
individual pdfs and, thus, it exhibits a triangular shape within
[—27, 27]. Phase wrapping effects, render this pdf equivalent to a
uniform one within [—m, 7].
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Figure 4: Normalized RSS vs. a = & (N = 100).

mean o~ " [7](Ch.3). From all the above, the upper bound
for normalized RSS in (13) yields:

SS < e Zal_k—k. (14)

This expression reveals that, with perfect phase-shift esti-
mation, the normalized RSS exclusively depends on «, that
is, the ratio of the number of available timeslots to the num-
ber of sensors. In Fig. 4, we depict the actual RSS (for a
scenario with N = 100 sensors) along with the correspond-
ing upper bound. The bound is particularly tight for large «
(i.e. M >> N) since, in this case, the upper bound in (10) is
tight as well (essentially, the cross terms in the summations
vanish). Besides, we also realize that, for large «, the sys-
tem achieves full beamforming gain. This follows from the
fact that, for large M, the probability of having more than
one sensor in a time slot is low. Consequently, the phase
shift can be ideally estimated and pre-compensated for each
individual sensor rather than for the whole group.

4. RSS ANALYSIS: NOISY PHASE SHIFT
ESTIMATION

Here, we assume that the duration of the training period is
fixed (e.g. defined as a percentage of the data transmission
time). Consequently, the higher the number of timeslots, the
shorter their duration. This has an impact on the quality of
the corresponding phase estimates éj that we analyze next.

Let fs be the sampling frequency. Consequently, the to-
tal number of samples in the training period and in each
timeslot are Ly = f,Tr and L = Ly /M, respectively. The
maximum-likelihood (ML) estimate of the aggregated phase
shift in the j-th slot is given by [8](Ch.7)

Yoo rsln] sin(2m fen)
Zﬁ;; rj[n] cos(2m fen)

£; = —arctan . (15)

where 7;[n] denotes the sampled version of the received sig-

nal. For large L, the estimation error A&; = & — §; turns
out to be a zero-mean Gaussian r.v. of variance

9 202 2Mo?2,
= = . 16
784 T LTRSS  Lr - RSS2 (16)

which indicates that the quality of the estimate is a function
of the number of samples L in the timeslot. To recall, the
instantaneous RSS at the BS after phase pre-compensation
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by all sensors reads
M-1 , X
RSS =Y > @it (17)

J=0 i€S;

and, from (5), we can write

1 1 M—-1 1 M-1
—_ LIAL = LIAE;
VRSS =+ ;RSS]e] N =alyg ;RSS]eJ il.

(18)
From the weak law of large numbers, for large M and N we
have that

| M2 '
al5r Z RSS, e’ 2% (19)
j=0

P jAE S
—>04‘EN,~,<I>N,A5,~ [RSS;e’2%]|,

where P denotes convergence in probability. With a slight
abuse of notation, the normalized RSS asymptotically reads:

SS= ‘EN],@N,AEJ [RSS; /2] (20)
or, equivalently,
S ‘ENJ,@N [RSS;Eac, v, 0 [7]] ‘ (1)

Since the phase estimation errors are Gaussian-distributed,
this implies that

oMol
e FTESS. (22)

12
JAE; | _ 732985
Eng;in,on [e =e I =

From the last two equations and by resorting again to
Jensen’s inequality, we can thus write

Mo?2
— M e
RSS = Z |Ew, ., |RSSje “T755 23
N J
M _ Mo2
= Ew ey [RSSje LRSS} (24)
M _ Mog,
< N]ENJ \/Nje Lr-N; (25)

where in the second equality we have exploited the fact that
all the terms in the expectation are real-valued and positive.
Again, for M,N — oo and a = % constant, the random
variable N; is approximately Poisson distributed and, thus,

L _ Mo?2

s e ()
RSS < e ™ <—) —e L7k (26)
= N k!

Interestingly, the exponential term in the summation models
the decrease in RSS resulting for the use of imperfect phase
estimates.

5. NUMERICAL RESULTS

In this section, we present some computer simulation and
numerical results which illustrate the behavior of the pro-
posed distributed beamforming scheme. In all cases, the
duration of the training slots is inversely proportional to M
and, hence, we address the scenario with imperfect (noisy)

Normalized RSS

Upper bound
— 8 — Simulation 4
----- Deterministic

0.2

M — number of slots

Normalized RSS

Bicg
Upper bound
0.2 — 8 — Simulation ]
----- Deterministic
N = 1000
0 2 3
10 10

M — number of slots

Fi%ure 5: Normalized RSS vs. number of timeslots M
(0% =3, Top: Tr = 10*, Bottom: Tr = 10°)

phase estimates. Without loss of generality, time is normal-
ized to the sampling period (i.e. Ts = 1).

Figure 5 (top) depicts the normalized RSS as a function
of the number of timeslots M. For benchmarking purposes,
we also indicate the RSS attainable when the BS allocates
sensors to timeslots in a centralized manner (M = N case,
curves labeled as ’deterministic’) and the corresponding up-
per bounds of (26). The plot reveals that the upper bound
is, in general, tight. However, it is worth noting that it is
not valid for very small or large values of M. For small M,
on the one hand, the bound (25) is loose and, besides, the
approximation of a binomial distribution by a Poisson one
is not accurate. For large M, on the other, the assumption
of large L = Lp/M in the computation of the asymptotic
variance of (16) does not hold. We also observe that the op-
timal number of timeslots increases for larger networks (see
maxima for the curves with N = 10, 100 and 1000 sensors).
Intuitively, the higher the number of sensors, the higher the
number of timeslots needed to minimize the risk of having
more than one sensor in one timeslot (even if this comes at a
price of experiencing higher variance in the phase estimates).
Besides, we observe that the loss (in terms of normalized
RSS) for schemes with decentralized allocation of timeslots
is moderate (some 5% to 15%). In other words, the lack of
coordination can be in part compensated with a sufficiently
high (and optimally designed) number of training timeslots.
Complementarily, Fig. 5 (bottom) shows some additional
results in scenarios with longer training periods (T = 10°
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vs. Tr = 10*). Unsurprisingly, the resulting RSS is higher
and so is the optimal number of timeslots.

Next, in Fig. 6, we plot the optimal number of timeslots
M* as a function of the variance of the channel noise o2,.
Clearly, M* is a monotonically decreasing function of ¢2: in
noisy scenarios, more samples per timeslot (L = Ly /M) are
needed to average out channel noise. It also reveals that the
optimal number of timeslots increases for an increasing du-
ration of the training period Tr. Since the number of sensors
is fixed (IV = 100), for larger T the probability of having
more than one sensor per timeslot decreases without impair-
ing too much the quality of the estimates. As a remark, the
curves saturate in the low-noise region because the lowest
possible number of samples per timeslot (namely, L = 1) is
reached there.

Finally, in Fig. 7 we depict the throughput given by (3) vs.

1500
T, = 1500
1000 .
T, =1000
s
T, =500
500 g
107 107" 10° 10'

Figure 6: Optimal number of timelots vs. variance of the
channel noise (N = 100)

the total duration of the data transmission period (for fixed
T = 10*). For the training period, we (numerically) optimize
on the number of timeslots. For benchmarking purposes, we
also include data on the theoretical thoughput achievable if
the (channel and oscillator) phase shifts were known and,
consequently, no training period were needed (ie. Tp =T
and RSS = N, dashed lines). As expected, there exists an
optimal operating point for each curve where the best trade-
off in terms of the beamforming gain after phase adjustments
vs. time left for data transmission is reached. Interestingly,
the duration of the training period amounts to less than 10%
of the wake up time 7" only. Moreover, the gap with respect
to the highest theoretical throughput is on the order of some
25%, in all cases.

6. CONCLUSIONS

In this paper, we have proposed a phase synchronization
scheme for collaborative beamforming with wireless sensor
networks. The scheme does not require the BS to coordinate
the allocation of sensors to the training timeslots or poll
them individually and, in that sense, it is decentralized. We
have derived (in general, tight) closed-form expressions for
the upper bound of the resulting received signal strength
(i.e., beamforming gain) in two scenarios of interest: ideal,
and noisy phase shift estimates arising from a finite duration
of the training period. For the first scenario, we have learnt
that, asymptotically, the normalized received signal strength
exclusively depends on the ratio of the number of timeslots to
sensors in the network (and it is a monotonically increasing
function). For the latter, numerical results reveal that there

N:= 1000

Throughput

= i i i i i i i i
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
T
D

Figure 7: Throughput vs. data transmission time (o2, = 3,
T = 10*). Dashed lines indicate the throughput with known
channel and oscillator phase shifts.

exists an optimal number of timeslots maximizing the overall
received signal strength for the data transmission period.
The optimal number of timeslots increases with the number
of sensors in the network and the duration of the training
period, and it decreases with the variance of the channel
noise. The loss, in terms of normalized RSS, with respect to
centralized schemes is moderate (some 5% to 20%). In terms
of achievable throughput, there also exists an optimal split
for the duration of the training and data transmission periods
which attains the best trade-off in terms of beamforming gain
vs. time left for data transmission. The gap with respect to
the theoretical throughput with ideal knowledge on channel
and oscillator phase shifts is on the order of 25%.
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