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ABSTRACT 
 
A novel algorithm is proposed for detecting and estimating 
sinusoidal frequency-modulated (SFM) signals based on the 
pulse-repetition-interval (PRI) transform which is originally 
used for estimating PRIs of pulse trains. Our algorithm 
utilizes the resemblance between the spectrum of a SFM 
signal and a pulse train, and applies the PRI transform to 
this spectrum. It can detect SFM signals under moderate 
signal-to-noise ratios, and is also capable of accurately 
estimating the modulation frequencies even if there are 
multiple components. The algorithm proposed has been 
successfully applied to simulated data, and compared with 
that of the autocorrelation method, showing its superiority. 
 

 

 

Index Terms— Sinusoidal frequency-modulated (SFM) 
signal, pulse-repetition-interval (PRI) transform, detection, 
estimation 
 

1. INTRODUCTION 
 
Sinusoidal frequency-modulated (SFM) signals are widely 
present in radar, speech, sonar and communication. For 
example, micromotion targets in synthetic aperture radar 
(SAR) can be characterized by SFM signals in noise and 
clutter environments [1]. Therefore, study on their detection 
and estimation is very important. We note that, in reality, 
detection and estimation can not be strictly distinguished. 

A few efforts have been devoted to the 
detection/estimation of SFM signals. In [2], the time-
frequency distribution followed by the Hough transform 
was proposed to detect SFM signals. The method is 
sensitive to thresholds and invalid when the signal-to-noise 
radio (SNR) is below -10 dB [2]. Also, long computation 
time is required by the Hough transform. Besides, there also 
exist a few algorithms for estimating the modulation 

frequency. The estimation method based on the time-
frequency distribution plus the extended Hough transform 
[2] is most popular but is subject to high computation 
complexity. A new basis decomposition method was 
proposed in [3], which is in effect identical to the maximum 
likelihood estimation. The method entails searching multiple 
parameters and therefore introduces significant calculation 
requirements. The autocorrelation function [4] and the 
average magnitude difference function can also be used to 
estimate micro-motion periods or frequencies, but they need 
long enough signal sequences and are subject to multiple-
period errors due to the peak periodicity in the two 
functions above. The space between spectrum peaks is also 
utilized for period estimation [5]. It requires high SNR to 
obtain fine spectra. The cyclic spectral density method [6] 
dispenses with limitations to the signal length, but it is not 
suited to multiple components possessing different 
modulation frequencies. 

Herein, we will develop a novel detection and 
estimation algorithm based on the pulse-repetition-interval 
(PRI) transform which is originally for estimating PRIs of 
an interleaved pulse train [7]. We observe the resemblance 
between SFM-signal spectra and pulse strains, and hence 
combine the Fourier transform with the PRI transform to 
realize the detection SFM signals and the estimation of the 
modulation frequency. The rest of the paper is as follows. In 
Section 2, the PRI transform is dealt with. In Section 3, the 
SFM signal model is built, and then a new algorithm is 
proposed by applying the PRI transform to it. Section 4 
provides several results and performance analysis with 
simulated data. Conclusions are reported in Section 5. 
 

2. PRI TRANSFORM [7] 
 
The PRI transform is an ingenious and well-performed 
algorithm for estimating PRIs of a pulse train, even if the 
strain is a superimposition of several independent radar 
signals with different PRIs. It is able to suppress the 
subharmonics appearing in the autocorrelation function. 
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Fig. 1.  Pulse train and its decomposition (two sub-pulse-trains as example). 

 
Suppose a pulse train can be modeled as a sum of unit 

impulses 
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where     is the Dirac delta function, nt  is the pulse 

arrival time, and N  is the number of pulses. Define the 
following integral transform 
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Clearly, the transform is similar to the complex-valued 
autocorrelation function, and the difference is that  g t  in 

the PRI transform must take on values of zero or a constant 
(usually one). Substituting (1) into (2) leads to 

   
1 1

1 0

exp 2
N n

n
n m

n m n m

t
D t t j

t t
   

 

 

 
     
         (3) 

(2) and (3) are named the PRI transform. We can find 
that a phase term is contained for subharmonic suppression. 
The locations of the peaks appearing in  D   indicate the 

PRI values. The idea of suppressing subharmonics lies in 
that, for a pulse train containing only one PRI, it can be 
regarded as one original pulse train, and can also be 
decomposed into two sub-pulse-trains with the same PRI 
(two times of the original PRI) but with different phase 
terms (Fig. 1), or into more such sub-pulse-trains. When the 
PRI transform is performed, the phase terms from all the 
sub-pulse-trains are equally spaced at the unit circle and 
hence can be cancelled out, so the subharmonics are 
suppressed. 

The PRI transform above can be further discretized for 
realization in computers. It has also been improved for 
processing pulse jitter [7]. In the following analysis we will 
make used of the improved version. 

 
3. SFM SIGNAL DETECTION AND ESTIMATION 

USING PRI TRANSFORM 
 
3.1. Signal model 

 
A SFM signal can be expressed by 

  0 0( ) exp 2 cosrc m m m mS t j f t jA t             (4) 

where   is assumed to be a constant complex factor, 0f  is 

the fundamental frequency at 0mt  , m  is the modulation 

angular frequency,  / 2m mf    is the modulation 

frequency, and A  is the modulation index. 
 
3.2. Jacobi-Anger expansion 
 
(4) can be expanded by Jacobi-Anger expansion 
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where  nJ   is the n-th order of first-kind Bessel function. 

Substituting (5) into (4) yields 
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Clearly, the signal contains multiple harmonics. Under 
Carson’s rule, the number of the harmonics is 

2 3N A            (7) 

The strength of the harmonics is weighted by Bessel 
functions. Also, the spacing between their frequencies is 

m , resulting in a comb-shaped spectrum, as Fig. 2 shows.  
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Fig. 2.  SFM signal spectrum without noise. 

 
3.3. New algorithm 
 
We are excited to find out that the spectrum bears some 
resemblance with a pulse train, irrespective of the 
amplitudes, and therefore are inspired to apply the PRI 
transform to the detection and estimation of SFM signals. 

The resulting algorithm is described as follows. 
Step1: Conduct the Fourier transform to obtain the 

signal spectrum; 
Step2: Detect harmonic components whose strength is 

over a threshold; 
Step3: Convert the spectrum to a pseudo-pulse-train 

(0-1 sequence) according to the detection results; 
Step4: Perform the PRI transform; 
Step5: Compare the resulting peaks with a threshold to 

decide if there is any SFM signal, and the locations of the 
over-threshold peaks provide the estimation of modulation 
frequencies. 
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Note that two thresholds are required. The threshold in 
Step5 is provided by the PRI transform itself [7], while the 
one in Step2 can be obtained by the constant false alarm rate 
(CFAR) technique. The algorithm can concentrate all the 
frequency components into a single peak, and is also 
suitable for multiple components with different modulation 
frequencies since the PRI transform can in itself estimate 
PRIs of interleaved pulse trains. 
 
3.4. Discussion 
 

3.4.1. Estimation precision 

PRI bins are utilized for calculating the PRI transform, and 
as a result the estimation precision mainly lies in the width 
of the PRI bin containing the peak. Also, PRI bins are not 
necessary to have the same width. 
 

3.4.2 Limitation to the number of harmonics 

The PRI transform depends on a large number of pulses and 
thus the harmonics should be numerous enough, but there is 
not a quantitative norm. From (7), the larger the modulation 
index A  and the smaller the wavelength, the better for 
applicability of our algorithm. 
 

3.4.3 Computation complexity 

Let us estimate the number of floating point operations 
(FLOPs) of the algorithm. For a range cell, our algorithm 
mainly consists of a fast Fourier transform (FFT) and a PRI 
transform. A FFT of length aN  requires 25 loga aN N  

FLOPs [8], while a PRI transform needs less than 2

aNC  

times of complex addition (see (3)), that is 

 2 22 2 1 / 2
aN a a aC N N N    FLOPs. Therefore the total 

FLOP number is not more than 2
25 loga a aN N N . By 

comparison, the autocorrelation method, which also first 
need a FFT, requires 2

25 log 2 2 1a a a aN N N N    FLOPs, 

the proving of which is omitted. Evidently our algorithm 
has lower computational load. 
 

3.4.4 False alarm (FA) 

The information that our method explores is the frequency 
difference between different peaks from the spectrum 
without using the amplitude information. The performance 
will be jeopardized. For example, if we have signals of 
10Hz, 20Hz and 30Hz of same power or not, then it might 
be recognized as a SFM signal. This situation will lead to 
many FAs. However, this is just a special case. 
 

4. TEST RESULTS 
 
We conduct the following experiments using simulated data, 
for testing the performance of the algorithm. The simulated 
signal consists of one or two components. The signal time is 
2s (from -1s to 0.998s), the sampling interval is 0.002s, and 
thus its total length aN  is 1000. For Component1, 

1 12 2 15rad/sm mf     ; for Component2, 

2 22 2 11rad/sm mf     . The other parameters are the 

same: 5.5A  , 0 135   . Fig. 3 displays the short-time 

Fourier transform (STFT) and the spectrum of Component1. 
From Fig. 3(a) it can be seen that the signal exhibits a sine 
shape, though contaminated by noise, implying the 
sinusoidal phase modulation. Its spectrum shows equal-
spaced lines (Fig. 3(b)). 
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Fig. 3.  Signal time-frequency distribution and spectrum under 
SNR 5dBin   . (a) STFT; (b) Spectrum. 

 
Under -5dB SNR, the signal is detected and estimated 

with the proposed algorithm, they are also estimated by the 
autocorrelation method for comparison. The results for a 
single component are shown in Fig. 4. We can see that both 
of the methods provide accurate estimations for the true 
vibration frequency 15Hz. The subharmonic components 
corresponding to sub-pulse-trains are suppressed after the 
PRI transform (Fig. 4(a)), but the autocorrelation function 
exhibits multiple peaks (Fig. 4(b)) which tends towards 
incorrect estimations (the error is multiple times of the true 
frequency), and this is also why the autocorrelation method 
is not usually used for detection. 
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The results for two targets are shown in Fig. 5. Clearly, 
the detection of the two vibrating targets is impossible from 
the autocorrelation function (Fig. 5(b)), let alone correct 
estimation. In contrast, from the results output by the 
algorithm (Fig. 5(a)) we can clearly find there are two 
vibrating targets above the threshold; the locations of the 
two peaks are near the true values, 11Hz and 15Hz, 
respectively. 
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Fig. 4.  Detecting/estimating results for a single component. (a) Our 
algorithm; (b) Autocorrelation method. 
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Fig. 5.  Detecting/estimating results for two components. (a) Our algorithm; 
(b) Autocorrelation method. 

 

For further performance analysis, we also plot the 
relationship between FA and the threshold used in Step4 
when vibration is not present, as Fig. 6 shows. Five hundred 
times of Monte-Carlo simulations are performed. Clearly 
the FA decreases with increasing threshold on the whole, 
and it reaches 0.002, which is used in the following CFAR 
detection, when the threshold equals 90. In reality the 
threshold should be found by the given FA and the 
estimated noise covariance. 

Keeping the FA rate constant (0.002 herein), we plot 
the probability of detection (PD) versus SNR curves for one 
and two targets respectively, as Fig. 7 shows. For one 
component, the PD is near one when the SNR is above -5dB, 
but still acceptable when it’s above -10dB. The detection 
performance deteriorates when the component number 
increases since the SNR in the plot corresponds to the total 
energy and therefore the SNR for either component is in 
effect smaller. 
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Fig. 6.  FA rate versus threshold. 
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Fig. 7.  Detection rate versus input SNR. 

 
Fig. 8 plots the curve of Root-mean-square (RMS) 

error with respect to the SNR for evaluating the estimation 
performance. The true value of the modulation frequency is 
15Hz. We can find the error decreases as the SNR increases 
on the whole. We can also see that, only when the SNR is 
above -5dB can the acceptable error be obtained. That is, 
the estimation requires higher SNR than does the detection. 
When the SNR is below -5dB and above -10dB, the 
estimation error is large but the PD is still relatively high. 
From this point we can presume that, in such a case, the 
peaks may be at incorrect locations though the algorithm 
has detected micro-motion targets with a high PD. 
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Fig. 8.  RMS error for the modulation frequency estimation of Component1. 
 

5. CONCLUSION 
 
In this paper we have developed a PRI transform based 
algorithm for detecting SFM signals and for estimating the 
modulation frequencies. The key idea is to treat the signal 
spectrum as a pulse train and then to apply the PRI 
transform to the pseudo-pulse-train. The algorithm takes full 
advantage of the PRI transform so that it can detect multiple 
SFM signal components, while dispensing with the error of 
multiple-times of vibration frequencies facing the 
conventional autocorrelation method. It’s not vulnerable to 
part-of-spectrum-peaks’ missing, and doesn’t require rigidly 
equal space between peaks since PRI transform can process 
pulse jitter. Also, the algorithm has lower computational 
load than the autocorrelation method. Simulated data have 

demonstrated its performance. In our later work, we will use 
real SAR data to further test its performance. 
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