
ADAPTIVE SELECTION OF COLOUR TRANSFORMATIONS
FOR REVERSIBLE IMAGE COMPRESSION

Tilo Strutz

Deutsche Telekom, Hochschule für Telekommunikation Leipzig
Institute of Communications Engineering

Gustav-Freytag-Str. 43–45, 04277 Leipzig, Germany

ABSTRACT

This paper presents and investigates a new family of reversible low-

complexity colour transformations. It shows that, for a reasonably

large set of natural images, there is a colour transform which per-

forms better in the context of lossless image compression than the

reversible colour transform defined in the JPEG2000 standard, while

having only slightly increased complexity. The optimal selection of

a colour space for each single image can distinctly decrease the bi-

trate of the compressed image. A novel approach is proposed, which

automatically selects a suitable colour space with negligible loss of

performance compared to the optimal selection.

Index Terms— image compression, reversible colour transform

1. INTRODUCTION

The reversible compression of image requires processing steps

which are themselves invertible. This characteristic is achieved, in

general, by using processing steps which map integer input samples

to integer output values. This also concerns the colour transforma-

tion, which aims at decorrelating the colour components Red, Green

and Blue (RGB).

A colour transformation converts a triple of non-negative integer

values (R, G, B) into another representation, say (Y, U, V), using

a 3 × 3 matrix A. The elements of the matrix should be chosen so

that the compression of the image leads to a minimum bitrate





Y
U
V



 = A·





R
G
B



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33



·





R
G
B



 . (1)

In [1], it was stated that the implementation with ladder net-

works (also known as lifting schemes) and triangular matrices with

unity diagonal elements enables a mapping from integer RGB val-

ues to integer YUV values. Rounding of intermediate values is an

essential step here. Most popular reversible colour transformations

use this principle as, for example, the reversible colour transforma-

tion (YUVr) defined in the JPEG2000 standard [2], and the YCgCo-

R colour space as proposed for the fidelity range extension of the

video coding standard H.264 [3].

This paper develops a new family of reversible low-complexity

colour transformations. To the author’s knowledge, this is the first

systematic evaluation of a wide variety of colour transformations.

The image-adaptive decorrelation of the colour components has

already been addressed in literature, while focussing on different ap-

plications [4, 5, 6, 7, 8]. The adaptation is performed either based

on the entire image, block-based or pixel-by-pixel. It is obvious that

local adaptation of processing steps is most likely superior to global

adaptation, especially if the decoder is able to make the decisions

without transmitting extra information. Unfortunately, the switching

between different colour spaces introduces discontinuities, influenc-

ing the subsequent processing. For this reason, this paper concen-

trates on an approach which selects a single suitable colour space

for an entire image. The main purpose is to show the potential of

the new family of colour spaces.

The paper is organised as follows: Section 2 reviews two popu-

lar colour transforms. Based on this, Section 3 derives a new family

of related colour transformations. Section 4 proposes a new scheme

for the automatic colour-space selection. Section 5 investigates its

application to lossless image compression and Section 6 discusses

the results and concludes the paper.

2. REVIEW OF POPULAR REVERSIBLE COLOUR

TRANSFORMATIONS

2.1. YUVr colour transform

The reversible colour transform defined in JPEG2000 uses the ma-

trix

A1 =





1/4 1/2 1/4

0 −1 1

1 −1 0



 . (2)

Together with the permutation matrix

P1 =





0 1 0

0 0 1

1 0 0



 , (3)

a proper factorisation into triangular matrices, enabling the rounding

operations necessary for the inner factors, would be

A1 = P1 ·





1 0 0

0 1 1/4

0 0 1



·





1 0 0

1/4 1 0

0 0 1



·





1 0 0

0 1 0

0 −1 1



·





1 −1 0

0 1 0

0 0 1





= P1 ·





1 0 0

1/4 1 1/4

0 0 1



 ·





1 −1 0

0 1 0

0 −1 1



 . (4)

Figure 1 shows the corresponding signal flow including the in-

verse transformation. It becomes clear that each single processing

step of the forward transformation can be reversed in the back trans-

formation simply by inverting the order of processing and flipping

the signs of coefficients. The inverse transformation matrix is

(A1)
−1 =





1 1 0

0 1 0

0 1 1



·





1 0 0

−1/4 1 −1/4

0 0 1



·PT

1 =





1 −1/4 3/4

1 −1/4 −1/4

1 3/4 −1/4



 .

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 1204

−αα

α
R

B

G

R

B

G

−α

Yr

Vr

Ur

Fig. 1. Processing steps of reversible colour transformation (YUVr)

defined in JPEG2000 with α = 1/4

1/2

β

t

G

B

R

Cg

Y

Co

G

R

B
t

−1/2

−β

Fig. 2. Processing steps of the YCgCo-R colour transformation and

its inverse, β = 1/2

The integer-to-integer mapping is achieved by rounding the in-

termediate values of each single step. The complete calculations of

the RGB-to-YUVr and YUVr-to-RGB transformations are

Ur = B − G Vr = R − G Y = G + ⌊(Ur + Vr)/4⌋ (5)

G = Y − ⌊(Ur + Vr)/4⌋ R = Vr + G B = Ur + G . (6)

The YUVr colour space shows an excellent decorrelation per-

formance for a broad range of images and obviously has a very low

complexity (four additions and one bit shift operation per pixel).

2.2. YCgCo-R colour transform

The RGB-to-YCgCo-R transformation, [3], has a likewise low com-

plexity; the factorisation, however, is slightly different

C1 = P2 ·





1 0 0

0 1 0

0 1/2 1



·





1 0 0

0 1 −1

0 0 1



·





1 0 0

0 1 0

1/2 0 1



·





1 0 −1

0 1 0

0 0 1





=





0.25 0.5 0.25

−0.5 1 −0.5

1 0 −1



 , with P2 =





0 0 1

0 1 0

1 0 0



 . (7)

Figure 2 shows the corresponding signal flow for the forward

and the inverse transformation. Note that both the RGB-to-YUVr

and the RGB-to-YCgCo-R transformations are not orthogonal but

bi-orthogonal.

3. A NEW FAMILY OF LOW COMPLEXITY

TRANSFORMATIONS

In general, it is assumed that the Karhunen-Loève transform (KLT,

also known as principal component analysis) provides the maximum

decorrelation. It rotates the coordinate system in the direction of

maximal correlation between the RGB values. There are, however,

justified reasons not to use the KLT as colour-decorrelation step: (i)

it has to be considered that the rounding operations at lifting steps

with non-integer coefficients lead to non-linear effects disturbing the

optimal rotation of the coordinate system; (ii) the KLT is an orthog-

onal transformation. It is well-known that bi-orthogonal transforma-

tions can perform better, dependent on the application (for example,

in wavelet transforms); (iii) the adaptive computation of the KLT

and its factorisation into lifting steps is relativly complex; and (iv)

in application to image compression, the optimality criterion for the

colour transformation is not maximum decorrelation of colour com-

ponents, but the minimal bitrate of the compressed file.

In the following, we focus on low-complexity transformations,

which (i) can be performed using variants of the processing schemes

depicted in Figures 1 and 2 and (ii) have the same dynamic range1.

3.1. Computation of luminance component Y

Both colour transformations discussed above use

Y = ⌊(R + 2G + B)/4⌋ (8)

as a trade-off between decorrelation performance and low complex-

ity. The computation of Y can be varied by the values of α in the

structure of Figure 1 and β in the structure Figure 2.

The least complex variant is simply to copy one component.

The green component could be chosen: Y = G. This is achieved

by setting α = 0 or β = 1, respectively. There is, however, justified

reason also to consider R and B as possible Y component: Y = R
or Y = B.

Now it becomes clear that the ‘best’ colour space we are seeking

is not necessarily a decomposition in a luminance and two chromi-

nance components. Nevertheless, we will stick to theses terms for

simplicity.

For a majority of natural images, averaging the RGB values

is more related to the KLT: Y = ⌊(R + G + B)/3⌋, which is

achieved by either using α = 1/3 or β = 1/3. While copying

one component reduces the amount of computation significantly, the

division by three takes more time than simple bit-shift operations.

The proposal in [9] approximates 1/3 with 3/8 and 5/16, convert-

ing the division in a multiplication and a shift operation. For this

purpose, we have to set α = 5/16 or β = 3/8, respectively, leading

to Y = ⌊(5R + 6G + 5B)/16⌋. To limit the number of possible

colour spaces, this approximation will not be considered further.

Regarding the modification of Y , there are the following addi-

tional transformation matrices

A2 =





0 1 0

0 −1 1

1 −1 0



 and A3 =





1/3 1/3 1/3

0 −1 1

1 −1 0



 . (9)

with respect to the processing flow in Figure 1. The structure in

Figure 2 can be utilised for

C2 =





0 1 0

−1/2 1 −1/2

1 0 −1



 and C3 =





1/3 1/3 1/3

−1/2 1 −1/2

1 0 −1



 . (10)

We would like to note that the colour space O1O2O3 [10],

which is referred to by some papers, is equivalent to the transforma-

tion matrix C3. The mere difference lies in a scaling of values by

minus two leading to an unusual dynamic range of the chrominance

values in the O1O2O3 space.

3.2. Computation of chrominances U and V

Considering the colour transformations discussed above, there are

only four different formulae to compute a chrominance value: R −
G, B−G, R−B, and G−(R+B)/2. The sign has no influence on

the decorrelation, i.e. R−G and G−R are qualitatively equivalent.

1If R, G, and B require eight bits per value each, then Y also requires
eight, while U and V require nine bits.

1205

−αα

R

B

G

R

B

G

−αα −ε ε

Yr

Vr

Ur

Fig. 3. Structure of the YUVr transformation with an additional

lifting step

B-G

R-G R-B

G-(R+B)/2

G-(R+3B)/4

R-(B+G)/2

B-(G+R)/2

G-(3R+B)/4

B-(3G+R)/4

B-(G+3R)/4

R-(3B+G)/4R-(B+3G)/4

YUVr

YUVr

YCgCo

YCgCo

Fig. 4. Circle of possible low-complexity calculations of the chromi-

nance components U and V with gradual changes

The variety of colour spaces can be extended via permutations

of the RGB input values modifying (2) and (9) to

A4 =





1/2 1/4 1/4

−1 0 1

−1 1 0



 A5 =





1/4 1/4 1/2

0 1 −1

1 0 −1



 (11)

A6 =





1 0 0

−1 0 1

−1 1 0



 A7 =





0 0 1

0 1 −1

1 0 −1



 (12)

A8 =





1/3 1/3 1/3

−1 0 1

−1 1 0



 A9 =





1/3 1/3 1/3

0 1 −1

1 0 −1



 . (13)

The matrices in (7) and (10) can be changed to

C4 =





1/2 1/4 1/4

1 −1/2 −1/2

0 1 −1



 C5 =





1/4 1/4 1/2

−1/2 −1/2 1

1 −1 0



 (14)

C6 =





1 0 0

1 −1/2 −1/2

0 1 −1



 C7 =





0 0 1

−1/2 −1/2 1

1 −1 0



 (15)

C8 =





1/3 1/3 1/3

1 −1/2 −1/2

0 1 −1



 C9 =





1/3 1/3 1/3

−1/2 −1/2 1

1 −1 0



 . (16)

3.3. Structure with increased flexibility

The variety of U/V-computations based on permutations is very lim-

ited, especially as the computation of Y is dependent on the compu-

tation of U and V .

The flexibility can be significantly increased by using only one

additional lifting step with coefficient ε, extending the YUVr struc-

ture (Fig. 3) and enabling many more different computations of the

chrominances.

If we stick to low-complexity transformations, the variety,

which is depicted in Figure 4, can be easily achieved.

Keeping α = 1/4 and setting ε equal to 1/4, 1/2, or 3/4 results in

E1 =





1/4 1/2 1/4

−1/4 −3/4 1

1 −1 0



 E2 =





1/4 1/2 1/4

−1/2 −1/2 1

1 −1 0



 (17)

E3 =





1/4 1/2 1/4

−3/4 −1/4 1

1 −1 0



 . (18)

Exchanging the input values of R and B, R and G, or G and B in

E1 to E3 yields

E4 =





1/4 1/2 1/4

1 −3/4 −1/4

0 −1 1



 E5 =





1/4 1/2 1/4

1 −1/2 −1/2

0 −1 1



 (19)

E6 =





1/4 1/2 1/4

1 −1/4 −3/4

0 −1 1



 (20)

E7 =





1/2 1/4 1/4

−3/4 −1/4 1

−1 1 0



 E8 =





1/2 1/4 1/4

−1/2 −1/2 1

−1 1 0



 (21)

E9 =





1/2 1/4 1/4

−1/4 −3/4 1

−1 1 0



 E10 =





1/4 1/4 1/2

−1/4 1 −3/4

1 0 −1



 (22)

E11 =





1/4 1/4 1/2

−1/2 1 −1/2

1 0 −1



 E12 =





1/4 1/4 1/2

−3/4 1 −1/4

1 0 −1



 . (23)

Again, it is possible to exchange an additional pair of columns in

(21) to (23) leading to

E13 =





1/2 1/4 1/4

−3/4 1 −1/4

−1 0 1



 E14 =





1/2 1/4 1/4

−1/2 1 −1/2

−1 0 1



 (24)

E15 =





1/2 1/4 1/4

−1/4 1 −3/4

−1 0 1



 E16 =





1/4 1/4 1/2

1 −1/4 −3/4

0 1 −1



 (25)

E17 =





1/4 1/4 1/2

1 −1/2 −1/2

0 1 −1



 E18 =





1/4 1/4 1/2

1 −3/4 −1/4

0 1 −1



 . (26)

With α = 0 and variation of ε from 1/4 to 1/2 to 3/4, we

get matrices D1 to D18, differing from E1 to E18 only in the first

line, which is responsible for the computation of Y . Here, 1/2 is

substituted by ‘1’ and 1/4 by ‘0’. It has to be mentioned that, in

contrast to the exchange of the RGB values, the assignment of U
and V (i.e. the order of the computed chrominances) has no impact

on the compression of the decorrelated colour image data as long as

the components U and V are processed in identical manner in the

coding stage.

Finally, we have to consider the cases where Y is the average

of R, G, and B (α = 1/3). Here, only ε = 1/4 is of interest,

since choosing ε = 1/2 repeats matrices from the Ci family branch

and ε = 3/4 is achieved via ε = 1/4 plus permutation of the RGB

1206

values

F1 =





1/3 1/3 1/3

−1/4 −3/4 1

1 −1 0



 F2 =





1/3 1/3 1/3

1 −3/4 −1/4

0 −1 1



 (27)

F3 =





1/3 1/3 1/3

−3/4 −1/4 1

−1 1 0



 F4 =





1/3 1/3 1/3

−3/4 1 −1/4

−1 0 1



 (28)

F5 =





1/3 1/3 1/3

−1/4 1 −3/4

1 0 −1



 F6 =





1/3 1/3 1/3

1 −1/4 −3/4

0 1 −1



 . (29)

Sixty colour transformations can be distinguished in total: nine ma-

trices Ai related to the processing structure in Figure 1, nine ma-

trices Ci related to the processing structure in Figure 2, eighteen

matrices each for Di and Ei as well as six matrices Fi, all re-

lated to the extended processing structure in Figure 3. The iden-

tity (Y U V) = (R G B) (i.e. no colour transformation) has to be

considered as well.

On account of the selected low-complex processing strategies,

not all calculations depicted in Figure 4 can be combined. At least

one chrominance component is equal to the simple difference be-

tween two of the RGB values. The second chrominance component

lies on the circumference of the opposite sector.

4. AUTOMATIC SELECTION OF SUITABLE COLOUR

TRANSFORMATIONS

The minimum bitrate which can be obtained by a compression sys-

tem depends on the mean information content of the original data.

So, it is logical to examine the entropies of the three components Y,

U, and V after the colour transformation. The assumption is: the

smaller the sum entropy

Hsum = H(Y) + H(U) + H(V) , (30)

the lower the bitrate in the compressed signal.

Since many colour spaces share the same Y, U, or V component,

each component has to be computed only once. The computational

overhead of the adaptive selection can be limited further by using

only a subset of pixels for the examination. Investigations have

shown that, in general, 104
pixels are enough, if they are spread

over the whole image.

The only problem with the method described above is that the

colour transform can propagate noise from one colour component

into another, disturbing the subsequent step of spatial decorrelation.

We have implemented a simple prediction step, accounting for this

effect.

Let x[n, m] be a certain signal value at row 0 ≤ n < height
and column 0 < m < width in either the Y, U, or V component,

then the prediction error is computed as

e[n, m] = x[n, m] − x[n, m − 1] ∀ n, m (31)

and the entropies are determined based on these prediction errors

H(E)sum = H(EY) + H(EU) + H(EV) . (32)

So, the colour space leading to the smallest H(E)sum is chosen.

The selection can be transmitted to the decoder with only five bits

overhead.

Table 1. Results in bits per pixel using different colour-space set-

tings. See text for details.

averaged [bpp]

colour all 219 images only photos

space LOCO JPEG2K LOCO JPEG2K

RGB 10.015 10.855 11.673 12.016

YCgCo-R 8.154 8.767 9.287 9.553

E2 8.116 8.784 9.198 9.524

A2 8.115 8.765 9.262 9.580

D1 8.102 8.783 9.219 9.557

E1 8.093 8.755 9.184 9.509

YUVr 8.091 8.738 9.227 9.532

best 7.858 8.521 9.073 9.411

automatic 7.876 8.557 9.090 9.430

automatic (104
) 7.877 8.559 9.090 9.431

5. INVESTIGATIONS

The examination and comparison of 61 colour spaces require an

adequate number of test images with diverse characteristics. As a

compromise between statistical relevance and computational time, a

set of 219 images was assorted [11]. The images are taken from dif-

ferent sources (internet or standardisation groups), avoiding results

which are biased to a particular image generation system. Photos

account for 154 images, with the remaining images being computer-

generated images or of mixed content. Two different compression

algorithms are used as benchmark software: the LOCO-I algo-

rithm [12], which combines an adaptive spatial prediction step with

context-based rice coding, and a JPEG2000-like coding algorithm

based on integer wavelet transformation and block-based arithmetic

coding of bit-planes.

Each colour image was encoded 61 times using the RGB colour

space or different colour transformations as described above. The

average bitrates are listed in Table 1. In rows RGB to YUVr, it

shows the averaged bitrates if the colour transformation is fixed for

all images. It clearly can be seen that the YUVr space outperforms

RGB and YCgCo-R on average for this particular set of images.

Colour space A2 is included, since the corresponding transform has

the lowest complexity. If only photos are considered, the ranking

of the colour spaces is slightly different. The new colour space E1

now leads to the lowest bitrate.

For photos only, the colour space D1 is more suitable than

YUVr when using the LOCO-I algorithm despite its somewhat

lower complexity (V = R − G, U ′ = B − G, Y = G,

U = U ′ − ⌊V/4⌋). In general the result of D1 is closer to the

result of E1, when using the LOCO-I. As D1 and E1 differ only

in Y, it seems that the spatial prediction step in LOCO-I is more

sensitive to the propagated colour noise than the integer wavelet

transform. This sensitivity reduces the positive effect of computing

Y based on all three components.

Since all images were compressed 61 times using different

colour spaces, we can take for each image the run leading to the

lowest bitrate in bits per pixel. The colour space used for this run

determines the ‘best’ colour transformation. In Table 1, the row

‘best’ shows the result after averaging all smallest bpp values of

the images. It is distinctly smaller than the results with any fixed

colour space. Choosing an appropriate colour space can obviously

improve the compression performance. Figure 5 shows how often

a particular colour space was the best one. It can be seen that the

selection differs slightly depending on the compression algorithm.

The highest difference has YCgCo. It is best in ten cases when

using the wavelet-based coding scheme, but, in combination with

1207

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

R
G

B
Y

U
V

r
Y

C
g
C

o
A

2
A

3
A

4
A

5
A

6
A

7
A

8
A

9
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
D

1
D

2
D

3
D

4
D

5
D

6
D

7
D

8
D

9
D

1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
1
6

D
1
7

D
1
8

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
1
0

E
1
1

E
1
2

E
1
3

E
1
4

E
1
5

E
1
6

E
1
7

E
1
8

F
1

F
2

F
3

F
4

F
5

F
6

fr
e
q
u
e
n
c
y

best colour space

LOCO-I: other

JP2-like: other

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

R
G

B
Y

U
V

r
Y

C
g
C

o
A

2
A

3
A

4
A

5
A

6
A

7
A

8
A

9
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
D

1
D

2
D

3
D

4
D

5
D

6
D

7
D

8
D

9
D

1
0

D
1
1

D
1
2

D
1
3

D
1
4

D
1
5

D
1
6

D
1
7

D
1
8

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
1
0

E
1
1

E
1
2

E
1
3

E
1
4

E
1
5

E
1
6

E
1
7

E
1
8

F
1

F
2

F
3

F
4

F
5

F
6

fr
e
q
u
e
n
c
y

best colour space

LOCO-I: photos

JP2-like: photos

Fig. 5. Histogram of best colour spaces for 219 test images, separated into photos and other images

LOCO-I, it is best only for a single image. Furthermore, it can

be observed that some colour spaces are more suitable for natural

images (photos) and some (e.g. D10 – D14) are more applicable to

synthetic images.

Using the automatic selection as described above, the results in

line ‘automatic’ can be obtained (Tab. 1). They are considerably

better than any fixed colour space and very close to the theoretically

possible (line ‘best’). Performing the selection based on only 10
4

pairs of pixels (enabling the left-neighbour prediction) marginally

increases the bitrates on average.

6. SUMMARY AND CONCLUSION

Based on a wide variety of new low-complexity colour transforms,

it could be shown that the compression results improve if the colour

transformation is selected according to the image content. The anal-

ysis has revealed that the YUVr colour space is more suitable than

the YCgCo-R colour space for a broad range of images. The trans-

forms based on the new matrices E1 and E2, however, are more

often selected if the image is a photo (Fig. 5). With respect to the

investigated photos, the new colour space E1 outperforms YUVr.

The calculations of the RGB-to-E1 transform are

V = R − G U ′ = B − G (33)

Y = G +
⌊

(U ′ + V)/4
⌋

U = U ′ − ⌊V/4⌋ .

Synthetic images mostly compress best with colour spaces using R,

G or B as Y component.

Without significant loss of performance, a suitable colour space

can be selected based on a simple technique examining the entropies

of prediction errors in the luminance and chrominance components.

Generally, the computational overhead is marginal, as the image

analysis can be restricted to only 104
pairs of pixel.

Future investigations will show whether the new colour spaces

also increase the coding gain in lossy compression.

7. REFERENCES

[1] Fukuma, S.; Iwahashi, M.; Kambayashi, N.: Lossless color

coordinate transform for lossless color image coding. Proc. of

IEEE APCCAS, 24-27 Nov 1998, 595 – 598

[2] ISO/IEC JTC1/SC29/WG11 N1890, Information technology

– JPEG 2000 Image Coding System. JPEG 2000 Part I, Final

Draft Intern. Standard 15444, 25 Sep. 2000

[3] Malvar, H.; Sullivan, G.: YCoCg-R: A color space

with RGB reversibility and low dynamic range. ISO/IEC

JTC1/SC29/WG11, Document JVT-I014, 2003

[4] Hao, P.; Shi, Q.: Comparative study of color transforms for

image coding and derivation of integer reversible color trans-

form. Proc. of Int. Conf. Pattern Recogn., Sept. 2000, Vol.3,

224–227

[5] Han, S.-E.; Tao, B.; Cooper, T.; Tastle, I.: Comparison be-

tween Different Color Transformations for the JPEG 2000.

Proc. of PICS 2000, Portland, OR, March 2000, 259–263

[6] Marpe, D.; Kirchhoffer, H.; George, V.; Kauff, P.; Wiegand, T.:

An Adaptive Color Transform Approach and its Application in

4:4:4 Video Coding. Proc. of EUSIPCO 2006, Florence, Italy,

Sept. 2006

[7] Assche, S. van; Philips, W.; Lemahieu, I.: Lossless compres-

sion of pre-press images using a novel colour decorrelation

technique. Pattern Recognition, Vol.32, No.3, March 1999,

435–441

[8] Pasteau, F.; Strauss, C.; Babel, M.; Déforges, O.; Bédat, L.:

Adaptive Color Decorrelation for Predictive Image Codecs.

EUSIPCO 2011, Barcelona, Spain, 2011, 1100–1104

[9] Topiwala, P.; Tu, C.: New Invertible Integer Color Trans-

forms Based on Lifting Steps and Coding of 4:4:4 Video.

ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document

JVT-I015r3, San Diego, Sept. 2003

[10] Nakachi, T.; Fujii, T.; Suzuki, J.: Lossless and near-lossless

compression of still color images. Proc. of ICIP 1999, Vol.1,

453–457

[11] www1.hft-leipzig.de/strutz/Papers/Testimages/CT/ last vis-

ited 16.12.2011

[12] Weinberger, M.J.; Seroussi, G.; Sapiro, G.: LOCO-I: A Low

Complexity, Context Based, Lossless Image Compression Al-

gorithm. Proc. of DCC 1996, 140–149

1208

