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ABSTRACT

Blind channel identification (BCI) is known from communica-

tions as a bitrate saving alternative to the more conventional pilot-

based identification of source-receiver transfer functions. In multi-

microphone signal processing, however, the source signal is per se

not available for acoustic channel identification. The emerging bin-

aural signal processing discipline is a good example where BCI may

thus be considered necessary for tasks such as acoustic localization

or equalization. This paper evaluates current algorithms from BCI

in order to make a pair of hearing-aids aware of time-varying head-

related transfer functions without knowledge of the source signal.

Thereby, unrestricted bitrate is assumed to share both ear signals in

a central processor. Using simulations of binaural signals, we ex-

plore four two-channel adaptive identification algorithms and three

evaluation criteria as candidates for hearing-aids. Depending on the

criteria, the study shows striking similarities for specific configura-

tions of algorithm and data, but also reveals important differences.

1. INTRODUCTION

In binaural signal processing applications, such as digital hearing-

aids, the impulse responses from a point sound source in space to

the left and right ear describe the acoustic system. In dynamic envi-

ronments with changing locations of the target sound source with

respect to the human head, these head-related impulse responses

(HRIRs) are usually not known to a binaural signal processing al-

gorithm. Their availability would, however, foster the design of new

binaural algorithms for acoustic equalization, dereverberation, noise

reduction, source localization, or even head tracking. This motivates

the online estimation of HRIRs from the left and right microphone

signals of, e.g., a pair of hearing aids. Using only this information

then requires a blind binaural channel identification approach.

BCI has been explored in digital communications with applica-

tions to multi-antenna and oversampled single-sensor processing. It

was found that blind channel identifiability up to a gain factor re-

quires the absence of observation noise and common zeros between

the channels [1], [2]. BCI was later considered in audio and acoustics

[3]. Especially the more recent adaptive approaches based on recur-

sive error signal minimization can be applicable for online acoustic

impulse response inference [4], [5], [6]. In addition, the online prin-

cipal component analysis [7], as used in frequency-domain adaptive

beamforming [8], or its translation to a time-domain implementa-

tion [9], may provide inherent channel identification.

In the acoustics domain, however, the identifiability conditions

are hardly ever met. The dynamic range of, e.g., speech, causes a

large range of signal-to-noise ratios. Furthermore, acoustic chan-

nels contain random or systematic common zeros (the latter in case

of system order overmodeling). Algorithms to overcome the prob-

lems related to common zeros and noise have been published, e.g.,

[10], [11]. More recently, sophisticated evaluation criteria have been

developed [12], [13] to absorb the truly ill-conditioned part of the

identification problem, so that the better-conditioned and more in-

teresting part can be examined in more depth.

This paper studies the applicability of BCI in binaural hearing-

aids. A set of candidate adaptive algorithms for two-channel HRIR

identification is outlined with unified notation. In doing so, we aim

to cover the range from quasi-supervised adaptive filtering to truly

blind adaptive filter design. We characterize relationships between

the algorithms and rank their suitability for the problem at hand. Two

different single-number metrics for performance evaluation are then

presented. By relaxing the usual expectation of strict channel iden-

tification up to a gain, we aim to bridge between theory and practice

of BCI. Using the relaxed metrics for evaluation across the diverse

set of algorithms, we demonstrate that in fact all candidates can

achieve similar and surprisingly good performance in the presence

of independent and uncorrelated observation noise. In addition to

single-number metrics, spectral analysis of blind channel estimates

is recommended and presented. We finally test the algorithms and

metrics under more realistic acoustic conditions with colored obser-

vation noise and point out limitations of current BCI technology.

The paper is organized as follows. Sec. 2 introduces the binaural

signal model and Sec. 3 reviews the candidate algorithms for BCI.

Sec. 4 then presents misalignment criteria with inherent discussion

of results for the independent and uncorrelated observation noise

case. For this particular scenario, a proof of the observed equiva-

lence of both single-number metrics is included. Sec. 5 separately

discusses the colored noise case and Sec. 6 draws conclusions.

2. HEAD-RELATED SIGNAL MODEL

Fig. 1 explains our notation. An unknown signal s(k) at discrete

time k, due to a sound source at angle ϕ, is convolved with left and

right HRIRs, hl,k and hr,k, to yield the binaural signals xl(k) and

xr(k) at the ears. After addition of acoustic observation noises nl(k)
and nr(k), the signals yl(k) and yr(k) are available for binaural

signal processing with adaptive digital filters bhl,k and bhr,k. If the

adaptive filters match the HRIRs, i.e., bhl/r,k =hl/r,k, the depicted

cross-relation (CR) processing would obviously yield an error signal

e(k) = 0 in the absence of observation noise [1], [3], [5].
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Fig. 1. Binaural reception and adaptive signal processing model.
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3. TWO-CHANNEL ADAPTIVE ALGORITHMS

Each of the following subsections contains a candidate algorithm for

blind estimation of the left and right HRIR, now as vectors

hl/r = [hl/r,0 hl/r,1 · · · hl/r,L−1]
T , (1)

based on the most recent observations contained in vectors

yl/r(k) = [yl/r(k) yl/r(k − 1) · · · yl/r(k − L + 1)]T . (2)

The estimated binaural channel bhl/r(k) at time k is defined in accor-

dance with hl/r . The linear filtering of Fig. 1 can then be expressed

as inner vector products resulting in the error signal

e(k) = bhT
r (k)yl(k) − bhT

l (k)yr(k) . (3)

This error signal will be a common factor of all CR-type algorithms

below, but it will not be employed in a PCA-type algorithm. A fur-

ther common factor of all algorithms will be the unit-norm constraint

on the estimated channels, i.e.,

||bh||22
△

= bhT
l (k)bhl(k) + bhT

r (k)bhr(k) = 1 . (4)

This constraint will be enforced via normalization after each itera-

tion of the adaptive algorithm loop to ensure that the blind channel

estimate is neither falling nor rising to extremes.

3.1. Stereo Least-Mean-Square (LMS) Algorithm

Considering the known inputs to the adaptive filters, we shall first

harvest from supervised adaptive filtering [14] in order to achieve

blind binaural channel identification. Let us assume low-noise ob-

servations yl/r(k) and exploit the aforementioned implication of

nulling the cross-relation error e(k) by a good channel estimate. Us-

ing the known “supervised” LMS algorithm [14], we can then adjust

the two-channel adaptive filter bhl/r,k to drive the adaptive filter out-

put, i.e., the signal e(k) in Fig. 1, to equality with the desired zero.

Formally speaking, we minimize the square error e2(k) with respect

to bhl,k and bhr,k to obtain, via gradient descent, two recursive update

rules for acoustic channel estimation:

bhl(k + 1) = bhl(k) + µ e(k)yr(k) (5)

bhr(k + 1) = bhr(k) − µ e(k)yl(k) . (6)

In further analogy with [14], we use a normalized stepsize factor

µ = µ0

`
y

T
l (k)yl(k) + y

T
r (k)yr(k)

´−1
(7)

to control the speed of adaptation with choices of 0 <µ0 < 1.

3.2. Adaptive Eigenvalue Decomposition Algorithm (AEDA)

In [4], the author relies on two-channel blind acoustic system iden-

tification in order to perform time-delay estimation. The BCI task,

subject to unit-norm constraint, is recognized as a minimum eigen-

vector estimation problem and solved by iterative minimization of

the Rayleigh quotient R = e2(k)/||h||22. When the unit-norm con-

straint is maintained in the iterative loop, as described in the pream-

ble of this section, the following version of AEDA can be invoked:

bhl(k + 1) = bhl(k) + µ e(k)
`
yr(k) + e(k)bhl(k)

´
(8)

bhr(k + 1) = bhr(k) − µ e(k)
`
yl(k) − e(k)bhr(k)

´
. (9)

Because of additional terms next to yl/r(k) in the updates rules,

AEDA obviously represents an extension of the stereo LMS algo-

rithm. The additional terms may, however, not be very intuitive. As

the results in Sec. 4 will not indicate large impact of the extension,

we leave extensive interpretation aside. In order to take the input sig-

nal level into account, we will rely on the same normalized stepsize

factor µ as shown by (7) for the stereo LMS algorithm.

3.3. Blind Multichannel LMS (MCLMS) Algorithm

The authors of [5] propose the MCLMS algorithm as a generaliza-

tion of AEDA to efficiently solve P -channel (P ≥ 2) blind iden-

tification problems by recursive update. They showed for this case

that blind identification again can be seen as a minimum eigenvec-

tor estimation problem. Generalizing AEDA, the cost function of

the adaptive MCLMS algorithm utilizes all pairwise cross-relations

between available channel-pairs. In contrast to AEDA, MCLMS re-

lies on fully populated matrix algebra to describe the update rules

for all channels. Apart from solving the comprehensive P -channel

identification, an implementation in terms of matrix algebra would

unfortunately cause a too high computational load on almost any

platform used in online adaptive audio signal processing.

Naturally, MCLMS can also be invoked for two-channel prob-

lems. Considering time-varying and data-dependent instantaneous-

correlation matrices eRyiyj
(k) = yi(k)yT

j (k), i, j ∈ {l, r}, and

again assuming that unit-norm is enforced explicitly in the iterative

loop, we can adopt the MCLMS for our P = 2 application:

bhl(k + 1) = bhl(k) +

+ µ
` eRyryr (k)bhl(k) − eRyryl

(k)bhr(k) − e2(k)bhl(k)
´

(10)

bhr(k + 1) = bhr(k) +

+ µ
`
−eRylyr (k)bhl(k) + eRylyl

(k)bhr(k) − e2(k)bhr(k)
´

. (11)

Upon substituting the definition of eRyiyj
(k) everywhere in the

update rules, we immediately notice for instance in (11) that

−eRylyr (k)bhl(k) + eRylyl
(k)bhr(k) = yl(k)e(k) . (12)

Hence, for P = 2, the MCLMS algorithm is equivalent to AEDA.

However, AEDA offers great advantage in that it requires inner-

vector-product arithmetic only and is therefore our choice of imple-

mentation in later parts of this paper.

3.4. Adaptive Principal Component Analysis (APCA)

This learning algorithm can be derived by maximization of the out-

put power of a filter-and-sum array [8], again subject to the unit-

norm constraint on the filters. It has been originally known as Oja’s

rule in principal component analysis for neural network processing

[7]. Here, we rely on a time-domain interpretation consisting of iter-

ative channel identification and equalization [9].

Denoting by h←֓l/r(k) the time-reversed acoustic channels, a

two-channel matched-filter array (i.e., channel equalizer) is first

employed to yield an estimate bs(k) of the source signal,

bs(k) = bhT←֓
l (k)yl(k) + bhT←֓

r (k)yr(k) . (13)

On this basis, just considering bs(k) in place of s(k) in Fig. 1, we

can formulate quasi-supervised channel update rules to be executed

independently for each channel,

bhl/r(k + 1) = bhl/r(k) + µ el/r(k)bs(k) , (14)

based on the individual error signals for left and right,

el/r(k) = yl/r(k − L + 1) − bhl/r(k)bs(k) , (15)

and the assembly of the most recent equalizer output samples,

bs(k) = [bs(k) bs(k − 1) · · · bs(k − L + 1)]T . (16)

Here, we again use (7) to adjust the stepsize µ. The delayed version

of the two input signals, i.e., yl/r(k−L+1), has to be used in (15) in

order to compensate for L samples of delay between s(k) and bs(k)
according to the matched-filtering in (13).
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4. MISALIGNMENT CRITERIA

This section presents two types of single-number metrics for perfor-

mance analysis across the two-channel adaptive algorithms. The first

type indirectly evaluates the channel estimate via the CR-error, while

the second is an explicit impulse-response distance. Because of their

coherent results, we further establish the relationship of both metrics

and inspect estimated head-related transfer functions (HRTFs).

4.1. Cross-Relation-Error Attenuation (CREA)

A native measure to assess CR-type algorithms is the square-error

attenuation with respect to the total input signal variance, i.e.,

CREA =
E{e2(k)}

E{y2
l (k)} + E{y2

r(k)}
. (17)

Here, the expectation operator E{·} can be evaluated by short-time

averaging of the respective signal energies, e.g., via recursive or

non-recursive smoothing with appropriate time-constants. Apart

from proving correct implementation of minimum-eigenvector algo-

rithms, the CREA can also be evaluated for the PCA-type algorithm

by mimicking the CR-error in (3) using the observed signals yl/r(k)

with the estimated channels bhl/r,k from Sec. 3.4.

In case of very good channel identification, the CREA will sat-

urate according to the signal-to-noise ratio, because of CREA cal-

culation from noisy observations yl/r(k). If, under lab conditions,

the noise-free binaural signals xl/r(k) are available, we may further

calculate a noise-free CR-error

ee(k) = bhT
r (k)xl(k) − bhT

l (k)xr(k) (18)

and evaluate the corresponding noise-free error signal attenuation

gCREA =
E{ee 2(k)}

E{x2
l (k)} + E{x2

r(k)}
. (19)

While the noisy CREA is biased according to the observation noise

level, the gCREA provides us with an unbiased view on the binaural

target-signal cancellation (i.e., blocking) ability and, indirectly, on

the channel estimation performance of the algorithms.

Fig. 2 depicts learning curves for the described algorithms. The

binaural signals xl/r(k) were generated by convolving white Gaus-

sian noise with anechoic HRIRs measured on a KEMAR dummy-

head (http://sound.media.mit.edu/resources/KEMAR.html) and re-

sampled to 16 kHz for our simulation. The addition of independent

white Gaussian observation noises yields yl/r(k) at the signal-to-

noise ratio SNR = (σ2
xl

+ σ2
xr

)/(σ2
nl

+ σ2
nr

), where σ2
nl

= σ2
nr

.

The point source starts at ϕ = 45◦ (right-front) and its location

abruptly changes in the middle of the simulation to ϕ = 5◦ (near-

front) in order to study reconvergence behavior. In this experimental

configuration, it turns out that the performances of the different algo-

rithms can be hardly distinguished from each other. All candidates

exponentially converge with similar rate to about 16 dB below the

noise floor in the signals. This performance is plausible, by analogy

with supervised adaptive filtering, when considering the stepsize fac-

tor µ0 = 0.1 and adaptive filter length L = 128 used here. In the

middle of the simulation, all solutions reconverge at similar rate. It

is noteworthy that the blind identification is quite insensitive to the

diverse SNR levels at left and right ears for ϕ = 45◦ and ϕ = 5◦.

4.2. Normalized Filter-Projection Misalignment (NFPM)

For more explicit impulse response evaluation, we build on the con-

cept of projection misalignment which was originally conceived to
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(a) Stereo LMS (”the quasi-supervised approach”).
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(b) AEDA (”the minimum eigenvalue approach”).
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(c) APCA (”the constrained output maximizer”).

Fig. 2. Learning curves of different algorithms at SNR = 10 dB.

excuse the unavoidable gain error in blind identification [15]. Here,

we rely on the normalized filter-projection misalignment [13] as a re-

cent generalization with improved usability in the presence of com-

mon zeros in the channels. In contrast to original projection mis-

alignment, NFPM essentially absorbs an unavoidable common filter

error [9, 12, 13] from the estimated impulse responses. As a result,

it indicates whether relative impulse response characteristics are es-

timated well. This quality may prove to be helpful and in some cases

even sufficient to solve binaural signal processing tasks such as time-

delay estimation or acoustic signal enhancement.

With reference to [13], we rely on transposed usage of estimated

and true channels. We express individual impulse response errors

ǫl/r(k) in terms of length L + 2D zero-padded channels hz
l/r =

[0 · · ·hT
l/r · · · 0]T and size (L+2D)×(2D+1) convolution matrices

bHl/r =

2
6666664

bhl/r,0 0 · · · · · · · · · 0
bhl/r,1

bhl/r,0 · · · · · · · · · 0
...

...
. . .

. . .
...

...

0 · · · · · · · · · bhl/r,L−1
bhl/r,L−2

0 · · · · · · · · · 0 bhl/r,L−1

3
7777775

(20)

formed from the estimated channels, i.e.,

ǫl/r(k) = h
z
l/r − bHl/r(k) f(k) . (21)

The common filter f and NFPM are then defined via least-squares as

NFPMt(k) = min
f(k)

`
||ǫl(k)||22 + ||ǫr(k)||22

´
/||h||22 . (22)
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NFPM can be applied universally to all channel estimators de-

scribed in this paper. Fig. 2 depicts its evolution as a function of

time along with the cross-relation error. For the same data as before,

it can be seen that NFPM almost perfectly coincides with CREA, as

mean-square error signal and impulse-response misalignment do in

supervised adaptive filtering when broadband input is used [14].

We finally confirm that an evaluation of the algorithms in terms

of the just gain-absorbing normalized projection misalignment [15]

does not provide insight into the algorithms for the data at hand. It

resides only slightly below 0 dB and is thus not depicted here.

4.3. Relationship between CREA and NFPM

We shall not leave the observed and possibly intuitive coincidence of
gCREA and NFPM to the experiment alone. Hence, in this section,

we formally confirm their relationship.

Define estimated binaural signals bxl/r(k) = sT(k)
ebHl/r(k) via

length (2L+2D−1) source vectors s(k) = [· · · s(k) s(k−1) · · · ]T

and size (2L+2D−1)×(L+2D) convolution matrices formed from

estimated channels as before. Further invoking commutativity of the

linear filters in Fig. 1, the noise free cross-relation error as shown by

(18) equivalently reads

ee(k) = bxT
r (k)hz

l (k) − bxT
l (k)hz

r(k)

= −s
T(k) bHo(k)hz(k) , (23)

where bHo = [−
ebHr

ebHl] and hz = [hz
l

T hz
r

T ]T . Also, we can

rewrite (21) more compactly as hz = ǫ + bHf , where ǫ = [ǫT
l ǫ

T
r ]T

and bH = [ bHT
l

bHT
r ]T . Then substituting (21) into (23), the cross-

relation error is expressed directly in terms of ǫ(k), i.e.,

ee(k) = −s
T(k) bHo(k)

`
ǫ(k) + bH(k)f(k)

´
(24)

= −s
T(k) bHo(k)ǫ(k) , (25)

by exploiting the orthogonality of bHo and bH, i.e., bHo bH = 0.

On this basis, we proceed to evaluate the mean-square error as

E{ee 2(k)} = E {ǫT(k) bHoT (k)s(k)sT(k) bHo(k)ǫ(k)}

= σ2
s

`
||bhr(k)||2||ǫl(k)||2 + ||bhl(k)||2||ǫr(k)||2

´2
(26)

= σ2
s

`
||ǫl(k)||22 + ||ǫr(k)||22

´
(27)

assuming white noise input s(k) with variance σ2
s . The amplitude

addition in (26) is applied because of strong correlation between

filtered-impulse-response errors ǫl and ǫr after two-channel NFPM

regression in (22). The step towards (27) firstly exploits our ob-

servation of transposed proportionality of channel error and channel

estimate after the NFPM regression, i.e., ||ǫl(k)||2 = α||bhr(k)||2
and ||ǫr(k)||2 = α||bhl(k)||2, and secondly the unit-norm constraint

according to (4) is taken into account. The equivalence of gCREA
in (19) and NFPM in (22) is eventually seen by recognizing the nor-

malization of E{ee 2(k)} to E{x2
l (k)} + E{x2

r(k)} = σ2
s ||h||

2
2.

4.4. Spectral Analysis of Blind Channel Estimates

Depending on the target application, e.g., acoustic equalization or

signal enhancement, single-number metrics alone may not be re-

garded as sufficient criteria to judge the applicability of BCI. More-

over, we want to gain further insight into performance differences

of the blind estimators under investigation. For more in-depth con-

siderations, we therefore delve into spectral characteristics of true

and estimated channels, hl/r and bhl/r(∞), respectively. A further

quantity of interest, the product bHl/rf as defined via the NFPM cal-

culation in (21) and (22), will be termed the common-filter-corrected

channel estimate. For the sake of brevity, we limit our following pre-

sentation to AEDA and APCA, because we observed that the stereo

LMS algorithm again behaves very similar to AEDA.

Fig. 3 shows results for experimental conditions as before,

but only for right-front source location. AEDA tends to estimate

magnitude spectral characteristics more accurately than APCA, but

the low-frequency range is not well represented by both estima-

tors. APCA tends to adapt a flat transfer function for the ipsilateral

(right) HRIR channel. This behavior is reasonable when consider-

ing that the algorithm, with the help of a unit-filter, simply selects

the dominant ear signal as the principal component. The contralat-

eral impulse response is adjusted accordingly to represent relative

channel characteristics well. The latter is expected from the NFPM

results and confirmed here by the observation that the common filter

f obviously corrects the channel estimates into the actual channels.
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(a) AEDA (”the minimum eigenvalue approach”).
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(b) APCA (”the constrained output maximizer”).

Fig. 3. Spectral analysis of the blindly estimated binaural channels

in white observation noise. SNR = 10 dB. ϕ = 45◦. L = 128.

5. COLORED OBSERVATION NOISE CONDITIONS

More realistic conditions are of great interest in audio and acoustic

signal processing. We thus expose the selected algorithms, AEDA

and APCA, to a colored observation noise simulation, while us-

ing the same source and binaural signals as before. As seen from

Fig. 4a, we introduce acoustic resonances as they may occur in am-

bient noise. However, we do not introduce binaural coherence to

avoid possible ambiguities in the interpretation of the results.
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Fig. 4b (right ear only) shows that the performance of AEDA is

strongly affected by the coloration of the noise. The energy of the

adaptive filters is obviously pushed towards the low-energy bands of

the observation noise. The algorithm in fact utilizes the degrees of

freedom related to the common-filter error to achieve strong error

signal attenuation, while maintaining the unit-norm constraint at the

same time. Not even the common-filter correction can perfectly re-

store the original channel. It further turns out that the assumptions

stated after (27) are violated and, hence, CREA≪NFPM.

APCA in Fig. 4c is found to be more robust in the sense that

the estimate of the dominant channel flattens out as seen for white

observation noise. The left HRTF (not depicted for brevity) is again

adjusted accordingly so that the common-filter correction yields a

very nice match with the true channel. In terms of the single-number

criteria, we obtain CREA ≈ NFPM ≈ 28 dB and even the conver-

gence rate is comparable to the white-noise case in Fig. 2.
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(a) Observation noise power spectral density.
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(b) AEDA (”the minimum eigenvalue approach”).
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(c) APCA (”the constrained output maximizer”).

Fig. 4. Spectral analysis of blind channel estimates in the presence

of colored observation noise. SNR = 10 dB. ϕ = 45◦. L = 128.

6. CONCLUSIONS

BCI has been a delicate approach in acoustic signal processing, since

the strict identifiability conditions are not met. This paper has put

recent advances in algorithm design and evaluation metrics into per-

spective in order to better judge the applicability of BCI for binaural

channel identification. We presented ”minimum-eigenvector estima-

tion” and ”principal component analysis” as two major algorithm

classes. Under controlled conditions with white observation noise,

the results for both classes indicate usability of BCI. Especially the

normalized filter-projection misalignment, which absorbs the truly

ill-conditioned part of the BCI problem, coherently lines up the good

algorithm performances. Under the more realistic condition of col-

ored observation noise, minimum-eigenvector analysis turns out to

be very sensitive in terms of channel misidentification. Here, the

principal component analysis indicates more inherent robustness, but

still it detects only the relative channel information very well.
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