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ABSTRACT
A convolutive frequency-domain backward-model blind
source separation (BSS) for directly estimating the unmixing
matrix by solving a block-by-block least-squares approxi-
mate joint diagonalization (AJD) problem is presented. In
the new backward-model BSS, the inverse of an exponen-
tially weighted cross-spectral density matrix of the observed
signal is calculated at each frequency bin. The expansion
of the inverse matrix can lead to a criterion for applying the
alternating least-squares with projection (ALSP) algorithm to
the backward-model BSS. Introducing the block-processing
technique into the least-squares AJD (LS-AJD) problem is
effective to reduce computational burden per iteration at each
block frame. This new BSS does not need to solve the scaling
ambiguity by other methods due to the scale constraint. The
interfrequency correlation is used to prevent misalignment
permutation for the new BSS. Finally, we compare it with
the conventional forward-model BSS in both low and high
signal-to-noise ratio (SNR) environments and show that this
new BSS improves robustness.

Index Terms— Blind source separation (BSS), convo-
lutive audio mixture, joint diagonalization, alternating least-
squares (ALS) algorithm, block-processing technique

1. INTRODUCTION

Blind source separation (BSS) is a technique to recover
source signals from the observed signals that are modeled
as an unknown convolutive audio mixture of unknown quasi-
stationary source signals, where quasi-stationary signals are
modeled as an approximately stationary behavior over short
time interval that is called an epoch. Forward-model BSS is
to find a mixing matrix by minimizing a least-squares cri-
terion, and then to compute an inverse of the matrix. The
minimization of the criterion is mathematically equivalent to
jointly approximately diagonalizing the cross-spectral den-
sity matrices of the observed signals. Approximate joint
diagonalization (AJD) problem [1, 2] is to find the diagonal-
izing matrix and diagonal matrices. Alternating least-squares

(ALS) algorithm [2, 3] is a well-known technique for solv-
ing the AJD problem. Recently, the alternating least-squares
with projection (ALSP) algorithm for convolutive forward-
model BSS in frequency domain has been developed in [1]
by expressing the least-squares criterion by Khatri-Rao (KR)
product. The convolutive frequency-domain least-squares
AJD (LS-AJD) based forward-model BSS [1] is accom-
plished in the following four steps: 1) Estimate the mixing
matrix. 2) Find the unmixing matrix from that. 3) Correct
the frequency-dependent arbitrary scaled unmixing matrix.
4) Resolve the frequency-dependent permutation ambiguity.

Backward-model BSS is to directly find an unmixing ma-
trix by minimizing a least-squares criterion. In this paper, we
present an approach to LS-AJD-based backward-model BSS
of convolutive audio mixtures. The new approach can esti-
mate the unmixing matrix by finding a diagonalizing matrix
and diagonal matrices from the inverse of the cross-spectral
density matrices of the observed signals. The expansion of the
inverse matrix is allowed to adopt the ALSP algorithm in the
backward-model BSS. In the new BSS, solving the LS-AJD
problem is equivalent to estimating the diagonalizing the ma-
trices and solving the scale problem simultaneously. We in-
troduce the block-processing technique [4] into the LS-AJD
problem to reduce computational burden. The interfrequency
correlation is used to solve the permutation problem in this
new BSS. The new backward-model BSS has the advantage
of only two steps: 1) Estimate the unmixing matrix directly.
2) Solve the permutation. The separation performance of the
new BSS with setting the number of sensors to that of sources
is demonstrated by our real room experiments. Furthermore,
we show that this new BSS provides a low level of misadjust-
ment.

2. PROBLEM FORMULATION AND LS-AJD-BASED
FORWARD-MODEL BSS

In the convolutive mixing model between N sources s1(t), s2(t),
· · · , sN(t) and J sensors x1(t), x2(t), · · · , xJ(t) at time t,
we obtain the observed signal at the ith sensor as xi(t) =
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∑N
j=1 hi j(t) ∗ s j(t) + ni(t), where the sources are zero mean,

second-order quasi-stationary signals [1], the N sources are
independent of each other, J ≥ N ≥ 2, hi j(t) is the impulse
response from the jth source to the ith sensor without chang-
ing over the entire observation interval, the asterisk ∗ denotes
time-domain convolution, and the additive white Gaussian
noise (AWGN) ni(t) with mean zero and variance σ2 is in-
dependent of the sources. The time-domain observed signal
is transformed into the time-frequency domain by the short-
time Fourier transform (STFT). One can write xi(ωk,m),
where ωk = 2πk/K, k = 0, 1, · · · ,K − 1 and m is a time frame
index. Let Ts be shift size between two neighboring windows.
All observed signals are available in the time frame interval
1 ≤ m ≤ M, where M is the total number of time frames.
If K is significantly larger than the length of the mixing-
filter impulse response hi j(t), the time-domain convolution is
approximately converted to the following multiplication:

x(ωk,m) ≈ H(ωk)s(ωk,m) + n(ωk,m) (1)

where s j(ωk,m) and ni(ωk,m) are the STFTs of s j(t) and ni(t)
at time frame m, hi j(ωk) is the discrete Fourier transform
(DFT) of hi j(t), s(ωk,m) = [s1(ωk,m), s2(ωk,m), · · · , sN(ωk,
m)]T is the N × 1 vector of sources, H(ωk) is the J × N
mixing matrix of the transfer function from the N sources
to the J sensors, the J × 1 observed signal vector is de-
fined by x(ωk,m) = [x1(ωk,m), x2(ωk,m), · · · , xJ(ωk,m)]T ,
and n(ωk,m) = [n1(ωk,m), n2(ωk,m), · · · , nJ(ωk,m)]T is the
J × 1 vector of AWGN. The superscript T denotes trans-
pose. The cross-spectral density matrix of the source signal
Ps(ωk,m) = E[s(ωk,m)s(ωk,m)H] ∈ RN×N is diagonal, where
E[·] and the superscript H denote expectation operation and
Hermitian transpose respectively.

In order to separate the sources at each frequency bin ωk

independently in BSS, pre-multiplication of H(ωk) by the N×
J unmixing matrix W(ωk) yields

W(ωk)H(ωk) = Π(ωk)D(ωk) (2)

where Π(ωk) ∈ RN×N is a frequency-dependent permutation
matrix and D(ωk) ∈ CN×N is a scale or phase arbitrary diago-
nal matrix.

Let Px(ωk,m) ∈ CJ×J define the cross-spectral density
matrix of the observed signal at point (ωk,m)

Px(ωk,m) = H(ωk)Ps(ωk,m)H(ωk)H + σ2I (3)

where I denotes the J × J identity matrix and we assume that
H(ωk) and Ps(ωk,m) are nonsingular. If we find a diagonal-
izing matrix B(ωk) ∈ CJ×N and diagonal matrices Λ(ωk,m) ∈
CN×N to satisfy Px(ωk,m)−σ2I = B(ωk)Λ(ωk,m)B(ωk)H with
the scale constraint ∥bi(ωk)∥2 = 1, where bi(ωk) is the ith col-
umn of B(ωk) and ∥ · ∥2 denotes Euclidean norm, from (2),
the relationship between B(ωk) and H(ωk) becomes B(ωk) =
H(ωk)D(ωk)−1Π(ωk)−1, where W(ωk)B(ωk) = I.

In the frequency-domain forward-model BSS [1], in or-
der to approximate the cross-spectral density matrix of the
observed signal, after the Ξ estimated power spectral density
matrices are obtained by dividing the all observed signals into
Ξ epochs with the Welch periodogram method, the estima-
tion value is normalized. By using the normalized estimation
value P̂x(ωk, ξ), the measurement error at epoch ξ is obtained
by

E(ωk, ξ) = P̂x(ωk, ξ) − B(ωk)Λ(ωk, ξ)B(ωk)H . (4)

The LS-AJD problem is to find a diagonalizing matrix B̂(ωk)
and Ξ associated diagonal matrices Λ̂(ωk, 1), Λ̂(ωk, 2), · · · , Λ̂
(ωk,Ξ) by minimizing the sum of the measurement error
squares

B̂(ωk), Λ̂(ωk, ξ) = argmin
B(ωk), Λ(ωk , ξ)
∥bi(ωk)∥2 = 1

Ξ∑
ξ=1

∥E(ωk, ξ)∥2F (5)

with the scale constraint ∥bi(ωk)∥2 = 1 over significantly large
number of epochs Ξ at each frequency bin ωk, where ∥·∥F
denotes the Frobenius norm. The unmixing matrix Ŵ(ωk) is
obtained by the pseudo inverse of the matrix B̂(ωk)

Ŵ(ωk) =
(
B̂(ωk)HB̂(ωk)

)−1
B̂(ωk)H . (6)

3. BLOCK-PROCESSING LS-AJD CRITERIA FOR
BACKWARD-MODEL BSS

The conventional backward-model BSS algorithm for mini-
mizing the sum of the measurement error squares has been
proposed in [5], where the measurement error is obtained by
W(ωk)Px(ωk,m)W(ωk)H − Ps(ωk,m). The ALSP algorithm
can not be used to solve the criterion because Px(ωk,m) is
not a diagonal matrix in the form W(ωk)Px(ωk,m)W(ωk)H .
In order to apply the ALSP algorithm to a backward-model
BSS, we show that the sum of block-by-block measurement
error squares can be expressed by the expansion of the inverse
of the cross-spectral density matrix. Whereas a noise-free
cross-spectral density matrix can be obtained as Px(ωk,m) −
σ2I = H(ωk)Ps(ωk,m)H(ωk)H for the number of sensors be-
ing larger than that of sources, where σ2 is the smallest eigen-
value of the matrix Px(ωk,m), it can not be obtained for the
number of sensors being equal to that of sources. Therefore,
in this section, we set the number of sensors to that of sources.

We expand the inverse of the cross-spectral density matrix
of the observed signal at point (ωk,m) as

Px(ωk,m)−1 =
(
H(ωk)Ps(ωk,m)H(ωk)H + σ2I

)−1

=
(
H(ωk)H

)−1
Ps(ωk,m)−1H(ωk)−1

−σ2
∞∑
ℓ=0

(−1)ℓσ2ℓ ·
[(

H(ωk)H
)−1

Ps(ωk,m)−1H(ωk)−1
]ℓ+2
. (7)
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We discuss the proof of (7). According to the matrix inversion
lemma, the inverse of Px(ωk,m) can be expressed as

Px(ωk,m)−1 =
(
H(ωk)Ps(ωk,m)H(ωk)H + σ2I

)−1

=
(
H(ωk)Ps(ωk,m)H(ωk)H

)−1−σ2
(
H(ωk)Ps(ωk,m)H(ωk)H

)−1

·
[
I + σ2

(
H(ωk)Ps(ωk,m)H(ωk)H

)−1
]−1

·
(
H(ωk)Ps(ωk,m)H(ωk)H

)−1
. (8)

Ifσ2 is smaller than the smallest eigenvalue of H(ωk)Ps(ωk,m)
H(ωk)H , the series will be convergent as follows:

∞∑
ℓ=0

[
−σ2
(
H(ωk)Ps(ωk,m)H(ωk)H

)−1
]ℓ

=

[
I + σ2

(
H(ωk)Ps(ωk,m)H(ωk)H

)−1
]−1
. (9)

Hence, substituting (9) in the second term on the right side of
(8), we get (7). If we find a diagonalizing matrix W(ωk) ∈
CN×N and diagonal matrices Λ(ωk,m)−1 ∈ CN×N to satisfy

Px(ωk,m)−1+σ2
∞∑
ℓ=0

(−1)ℓσ2ℓ
[(

H(ωk)H
)−1

Ps(ωk,m)−1H(ωk)−1
]ℓ+2

=W(ωk)HΛ(ωk,m)−1W(ωk)

with the scale constraint ∥wi(ωk)∥2 = 1, where wi(ωk) is the
ith row of W(ωk), from (2), the relationship between W(ωk)
and H(ωk)−1 becomes W(ωk) = Π(ωk)D(ωk)H(ωk)−1. Let
E(ωk,m) define a measurement error at point (ωk,m)

E(ωk,m)= P̂x(ωk,m)−1−W(ωk)HΛ(ωk,m)−1W(ωk) (10)

where a procedure to obtain P̂x(ωk,m)−1 is given later. We use
the LS-AJD problem to find a diagonalizing matrix Ŵ(ωk)
and M associated diagonal matrices Λ̂(ωk, 1)−1, Λ̂(ωk, 2)−1,
· · · , Λ̂(ωk,M)−1 by minimizing the sum of the measurement
error squares

Ŵ(ωk), Λ̂(ωk,m)−1= argmin
W(ωk), Λ(ωk ,m)−1

∥wi(ωk)∥2 = 1

M∑
m=1

∥E(ωk,m)∥2F (11)

with the scale constraint ∥wi(ωk)∥2 = 1 over significantly
large number of time frames M at each frequency bin ωk. We
use the exponentially weighted cross-spectral density matrix
of the observed signal to provide the effect of a short-term
memory in the estimate of Px(ωk,m) at point (ωk,m)

P̂(ωk,m) = βP̂(ωk,m − 1) + x(ωk,m)x(ωk,m)H (12)

where the forgetting factor β is a positive constant close to, but
less than unity. P̂(ωk, 0) = cI and c is a small positive con-
stant. Px(ωk,m)−1 is estimated by normalizing P̂(ωk,m)−1 as
P̂x(ωk,m)−1 = P̂(ωk,m)−1/∥P̂(ωk,m)−1∥F , where P̂(ωk,m)−1

is the inverse of P̂(ωk,m).

Table 1. Procedure for estimating the unmixing matrix.
1. Update P̂(ωk,m) at each frame, as given by (12).
2. Compute P̂(ωk, τL)−1 at each block frame using the (13).
3. Estimate W(ωk) by the ALSP algorithm at each block
frame as shown in (14), (18), (20), and (22) in [1].
4. Go to step 1 for τ=1, 2, · · · ,⌊M/L⌋.

The significantly large M increases computational burden
to compute the inverse matrix P̂(ωk,m)−1, M diagonal ma-
trices Λ̂(ωk, 1)−1, Λ̂(ωk, 2)−1, · · · , Λ̂(ωk,M)−1, and the diago-
nalizing matrix Ŵ(ωk) at each time frame. In order to reduce
computational burden, we introduce the block-processing
technique [4] to find the LS-AJD estimate by inverting the
exponentially weighted cross-spectral density matrix of the
observed signal at each block time frame

P̂x(ωk,τL)−1=
P̂(ωk,τL)−1

∥P̂(ωk,τL)−1∥F
; τ=1, 2, · · · ,⌊M/L⌋ (13)

where block length L is set to unity or positive integer larger
than unity and ⌊x⌋ is the largest integer less than or equal to x.
Let us define a measurement error using the block-processing
technique, similar to (10), at each block frame

E(ωk,τL)= P̂x(ωk,τL)−1−W(ωk)HΛ(ωk,τL)−1W(ωk). (14)

By using the ⌊M/L⌋ block-by-block inverse matrices P̂x(ωk,
τL)−1, the block-processing LS-AJD problem is to minimize
the sum of the block-by-block measurement error squares

Ŵ(ωk), Λ̂(ωk,τL)−1= argmin
W(ωk), Λ(ωk , τL)−1

∥wi(ωk)∥2 = 1

⌊M/L⌋∑
τ=1

∥E(ωk,τL)∥2F (15)

with the scale constraint ∥wi(ωk)∥2 = 1. Consequently, the
block-processing LS-AJD estimate is a diagonalizing matrix
Ŵ(ωk) and ⌊M/L⌋ diagonal matrices Λ̂(ωk, L)−1, Λ̂(ωk, 2L)−1,
· · · , Λ̂ (ωk, L⌊M/L⌋)−1.

The procedure for solving (15) is shown in Table 1. The
ALSP algorithm alternates the two phases [1]. On phase one,
the method of least squares minimizes the sum of the mea-
surement error squares to find Ŵ(ωk)H ⊙ Ŵ(ωk), where ⊙
denotes the KR product and N matrices of size N2 × ⌊M/L⌋
are used to rewrite the criterion. It requires O

(
⌊M/L⌋N3

)
computational operations per iteration. Ŵ(ωk) is estimated
from Ŵ(ωk)H ⊙ Ŵ(ωk) by the power method. The power
method is continued until ŵ j(ωk) changes by less than ϵP be-
tween iterations. The method of least squares and the power
method are repeated until Ŵ(ωk)H ⊙ Ŵ(ωk) changes by less
than ϵG between iterations. On the other phase, the ⌊M/L⌋
pseudo-inverse matrices of size N × N2 are calculated to find
Λ̂(ωk,m)−1 by the method of least squares. The ALSP algo-
rithm is repeated until

∑⌊M/L⌋
τ=1 ∥E(ωk, τL)∥2F changes by less

than ϵC between iterations. It requires O
(
⌊M/L⌋N3

)
compu-

tational operations per iteration.
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Fig. 1. Experimental setup (300-ms reverberation).

4. EXPERIMENTAL RESULTS

The configuration of the room is shown in Fig.1. After mea-
suring impulse responses of the room at 8 kHz and 16-bit
sampling format, observed signals were obtained by convolv-
ing audio speech data with the impulse response. The data
set consisted of 12 seconds long speech for J = N = 2, 30
seconds for J = N = 3, and 100 seconds for J = N = 4.
The direction-of-arrivals (DOAs) of the sources were 30° and
−30° on a two-microphone linear array, 30°, 0°, and −30°
on a three-microphone linear array, and 40°, 30°, 0°, and
−30° on a four-element linear array. The Hanning window
was used for the STFT. The parameter was chosen empiri-
cally as 2048-point FFT, the forgetting factor of β = 0.99,
and the small positive constant of c = 10−2. The ALSP al-
gorithm continuously ran until the change between iterations
was less than ϵP = 10−15 and ϵG = ϵC = 10−6. The new
backward-model BSS was compared with the conventional
forward-model BSS [1]. The difference between the new and
the conventional BSSs is how to estimate the unmixing ma-
trix. In the conventional BSS, the scale problem was solved
by normalizing each row vector of Ŵ(ωk) at each frequency
bin. The new and the conventional BSSs solved the permuta-
tion problem by the approach based on correlation [6].

Let input signal-to-interference ratio (SIR) at the ith ob-
served signal and output SIR at the ith output signal define

SIRxi =10 log10

E
[
(hii(t) ∗ si(t))2

]

E




N∑
j = 1
j , i

hi j(t) ∗ s j(t) +
J∑

j=1

n j(t)


2

SIRyi=10 log10

E
[
(γii(t)∗si(t))2

]

E




N∑
j = 1
j , i

γi j(t)∗s j(t) +
J∑

j=1

ŵi j(t)∗n j(t)


2

Fig. 2. The output SIR versus block length for J = N = 2,
M = 12000, Ts = 8, and SNR ≈ 20 dB.
where γi j(t) and ŵi j(t) are the IDFTs of the matrices Γ(ωk) =
D(ωk)−1Π(ωk)−1Ŵ(ωk)H(ωk) and the unmixing matrices
Ŵ(ωk). The SNR is determined by the ratio of the de-
sired signal power and the power of the interference plus
noise component in the output signal after obtaining an opti-
mum unmixing matrix Wopt(ωk) and an optimum permutation
Πopt(ωk). When the room impulse response hi j(t) is available,
after calculating H(ωk)−1, the optimum unmixing matrix is
obtained by normalizing each row vector of H(ωk)−1 that is
mathematically equivalent to solving the scale problem. Sim-
ilarly, when H(ωk) and Wopt(ωk) are available, the optimum
permutation is obtained by

Πopt(ωk) = argmax
Π(ωk)

∥∥∥∥diag
(
Π(ωk)Copt(ωk)

)∥∥∥∥2
F
= I (16)

where Copt(ωk) = Wopt(ωk)H(ωk) and diag(A) denotes the
diagonal matrix of A. Thus, the SNR is equal to the optimum
output SIR.

First, the averaged output SIR versus block length is illus-
trated in Fig.2. The averaged input SIR was about 0.01 dB.
Fig.2 also depicts the overall output SIR of the nonblind de-
permutation backward-model approach, when H(ωk) is avail-
able, that is, Ŵ(ωk) is permuted by

Π(ωk) = argmax
Π(ωk)

∥∥∥∥diag
(
Π(ωk)Ĉ(ωk)

)∥∥∥∥2
F

(17)

after obtaining the block-processing LS-AJD estimate Ŵ(ωk),
where Ĉ(ωk) = Ŵ(ωk)H(ωk). We could achieve a good sepa-
ration performance for short block length almost same as for
L = 1 whereas the performance is degraded for block length
longer than 200 time frames. The separation performance for
L = 200 is just below the nonblind de-permutation approach
while the proposed BSS for L = 1 is 200 times as complex as
that for L = 200.

Second, we applied the new BSS on multiple sources.
Comparison of the nonblind de-permutation forward- and
backward-model approaches and the new BSS, and the con-
ventional BSS for J = N = 2 is shown in Fig.3(a), where Te

denotes the epoch size for the conventional forward-model
approach. In the SNR higher than 15 dB, both nonblind
de-permutation approaches could not achieve the optimum
output SIR because both LS-AJD estimation errors are dom-
inant and the ambient noise is negligible. Meanwhile, the
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Table 2. Comparison of the output SIR with the conventional
backward-model BSS [5] for J = N = 2, L = 200, and SNR ≈
30 dB. The reverberation time was about 270 ms [7].

Parra’s method Proposed BSS
1.65 dB 16.72 dB

background noise dominates both LS-AJD estimation errors
in the low SNR range. Compared to the conventional BSS,
the new BSS is at most up 1.31 dB on whether it is a robust ap-
proach. Fig.3(b) compares the two nonblind de-permutation
approaches and the two BSSs for J = N = 3. In the SNR
higher than 10 dB, both nonblind de-permutation approaches
could not achieve the optimum output SIR. Note that the
output SIR of the proposed BSS is 0.08 to 1.2 dB above the
conventional BSS in both low and high SNR environments.
Fig.3(c) shows the result of comparison of the nonblind de-
permutation approaches and the BSSs for J = N = 4. It can
be observed that the new BSS is about 0.55 to 1.62 dB higher
than the conventional BSS.

Finally, in Table 2, we compare the new BSS with the
conventional gradient-based backward-model BSS [5] with
parameter setting described in [7]. We only changed the im-
pulse response of a room artificially generated by the image
method, where the size was 16.6 × 11.2 × 8.0 ft, two sources
and sensors were located at the same position as in [7], and
the reflection coefficient was set to 0.7. The averaged input
SIR was about −0.67 dB. The new BSS performs quite well.

5. CONCLUSION

We have proposed an approach to backward-model BSS of
convolutive audio mixtures based on a block-by-block LS-
AJD problem. The inverse of an exponentially weighted
cross-spectral density matrix of the observed signal is cal-
culated at each block frame. The ALSP algorithm could be
applied to the backward-model BSS by the expansion of the
inverse matrix. It was shown that the block-processing tech-
nique is effective to reduce computational burden. This new
BSS does not need to solve the scaling ambiguity because of
the scale constraint. The interfrequency correlation was used
to overcome the permutation ambiguity. The experimental
results have shown that the new BSS is superior in its perfor-
mance to the conventional forward-model BSS in both low
and high SNR environments.
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