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ABSTRACT

This paper aims at studying the solution of linear independent
component analysis (ICA) based on Kullback-Leibler diver-
gence (KLD) for a linear noisy mixing model in the determined
case. The derivation is done using a perturbation analysis valid
for small noise variance. We study the noncircular complex and
the circular complex case. We show that for a wide range of both
the shape parameter and the noncircularity index of the gener-
alized Gaussian distribution (GGD), the signal-to-interference-
plus-noise ratio (SINR) of KLD-based ICA is close to that of
linear minimum mean squared error (MMSE) estimation.

Index Terms— Blind source separation, Independent com-
ponent analysis, Minimum mean square error, Kullback-Leibler
divergence, Perturbation analysis, noncircular complex

1. INTRODUCTION

In the last decades, independent component analysis (ICA) has
been studied intensively and has found many applications [1].
Usually, a linear noiseless mixing model is assumed and the
separated signals are obtained using a linear transform of the ob-
served signals. Although noisy mixing models have been stud-
ied quite early, for example in the context of contrast-based ap-
proaches [1], many publications still consider a noiseless mix-
ing model for simplicity. The presence of noise leads to a bias in
the estimation of the mixing matrix. Douglas et. al. introduced
measures in [2] to reduce this bias. Cardoso showed in [3] that
for the noisy case the performance of source separation depends
on the distribution of the sources, the signal-to-noise (SNR) ra-
tio and the mixing matrix. Hyvärinen showed in [4] that in
the noisy case, the maximum-likelihood (ML) estimate of the
signals is a nonlinear function of the observations. Koldovsky
et. al. derived in [5] the bias of several variants of the real Fas-
tICA algorithm from the MMSE solution. Davies studied in [6]
identifiability issues in noisy real ICA.

In this paper, we focus on KLD-based ICA with equal num-
ber of sources and sensors (determined case). As shown by
many different authors, KLD is (up to constant terms) identical
to mutual information, the information maximization principle
and for the noiseless case to ML estimation [1]. In many appli-
cations such as audio source separation in the frequency domain
or telecommunication, signals are complex and not necessarily
circular. General conditions regarding identifiability, unique-
ness and separability can be found in [7]. Algorithms for com-
plex ML-ICA have been studied for the noiseless case in [8].
However, practical applications have to deal with noise [9]. In
[10], we derived the theoretical ICA solution for the noisy de-
termined case and real signals. In this paper, we extend the re-
sults to the circular and noncircular complex case which is not
directly equivalent to the real case of twice larger dimension [7].

In the estimation of the demixing matrix, one has to distin-
guish two different factors:

1. Bias of the demixing matrix from the inverse mixing matrix:
Often a bias of an estimator is considered to be unwanted,
but in the case of noisy ICA the bias of the demixing matrix
from the inverse mixing matrix actually leads to a reduced
noise level in the separated signals and hence it can be con-
sidered to be desired.

2. Variance of the estimated inverse mixing matrix in the
noiseless case due to blind estimation and randomness of the
sources. This variance can be lower bounded by the Cramér-
Rao bound for ICA derived for the real case in [11] and for
the circular complex case in [12].

In this paper, we study only the first factor, i.e. the bias of the
demixing matrix from the inverse mixing matrix.

2. SIGNAL MODEL

We assume the linear noisy mixing model

x = As+ v (1)

where x ∈ C
N are N linear combinations of N original signals

s ∈ C
N with additive noise v ∈ C

N . We make the following
assumptions:

1. The deterministic mixing matrix A ∈ C
N×N is invertible.

2. s = [s1, · · · , sN ]T ∈ C
N are N independent random vari-

ables with zero mean, unit variance and second-order non-
circularity index γi = E[s2i ] ∈ [0, 1] (after scaling the
columns of A suitably). Since γi ∈ R, the real and imagi-
nary part of si are uncorrelated. Then γi 6= 0 if and only if
the variance of real and imaginary part differ.
We further assume: The probability density functions (pdfs)
qi(si) of si can be different. qi(si) is three times continu-
ously differentiable with respect to si and s∗i in the sense
of Wirtinger derivatives which will be introduced in section
3.1. All expectations required in this paper exist.

3. v = [v1, · · · , vN ]T ∈ C
N are N random variables with

zero mean and the covariance matrix E[vvH ] = σ2Rv.

σ2 = 1
N tr

[
E(vvH)

]
is the average variance of v and

tr(Rv) = N . R̄v = 1
σ2E[vvT ] is the normalized pseudo-

covariance matrix. R̄v = 0 if v is circular complex. The
pdf of v is arbitrary but assumed to be symmetric, i.e.

q(v) = q(−v). This implies E(
∏N

i=1 v
ki

i (v∗i )
k̃i) = 0 for

∑N
i=1

(
ki + k̃i

)
odd.

4. s and v are independent.
The task of ICA is to demix the signals x by a linear transform

W ∈ C
N×N

y = Wx = WAs+Wv (2)

so that y is ”as close to s” as possible according to some metric.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 1479



3. KLD-BASED ICA

In this paper, we focus on the ICA solution based on the KLD

Dpq(W) =

∫

py(y;W) log
py(y;W)

q(y)
dy (3)

where py(y;W) is the pdf of y. It depends on the pdf of obser-
vationx, i.e. on the pdf of the original source signals s and noise

v, as well as on the demixing matrixW. q(s) =
∏N

i=1 qi(si) is
the assumed pdf of the original signals. We assume that we have
perfect knowledge about the distribution of the original signals
and q(s) is identical to the true pdf q0(s) of s. The KLD is
known to have the following properties:

• Dpq(W) ≥ 0 for any py(y;W) and q(y).
• Dpq(W) = 0 iff py(y;W) = q(y).

This means that minimizing the KLD with respect to W is
equivalent to making the pdf of the demixed signals y as sim-
ilar as possible to the pdf q(s). Since we assume q(s) =∏N

i=1 qi(si), minizing KLD corresponds to making y as inde-
pendent as possible and the individual yi to have a pdf as close
as possible to qi(si). The ICA solution WICA for the demixing
matrix based on KLD is given by

WICA = argmin
W

Dpq(W). (4)

In the following, we will first derive the ICA solution for the
general (noncircular) complex case. The circular complex case
and the real case are discussed as two special cases.

3.1. General noncircular complex case

The KLD cost function of a complex demixing matrix W is
a function of the real and imaginary part of W. Using the
Wirtinger calculus [13], we can also write it as a function of
W and W∗:

Dpq(W,W∗)=

∫

py(y,y
∗;W,W∗) log

py(y,y
∗;W,W∗)

q(y,y∗)
dy. (5)

Before we continue with the derivation of the ICA solution,
we provide a short summary of the Wirtinger calculus. Given
Z = X + jY ∈ C

N×M , X,Y ∈ R
N×M , and a real scalar

cost function f(Z,Z∗) = f̃(X,Y) ∈ R. Instead of calculat-

ing the derivatives of f̃(·) with respect to X,Y, the Wirtinger
calculus calculates the partial derivatives of f(Z,Z∗) with re-
spect to Z and Z∗, treating Z and Z∗ as two independent vari-

ables [13]. Let
∂f
∂Z ,

∂f
∂Z∗

∈ C
N×M and

∂f̃
∂X , ∂f̃

∂Y ∈ R
N×M . It

can be shown:

1. The partial derivatives of f(·) with respect to Z and Z∗

are

∂f

∂Z
=

1

2

(

∂f̃

∂X
− j

∂f̃

∂Y

)

,
∂f

∂Z∗
=

1

2

(

∂f̃

∂X
+ j

∂f̃

∂Y

)

. (6)

2. The stationary point of f(·) and f̃(·) is given by

∂f̃

∂X
= 0 and

∂f̃

∂Y
= 0 ⇔

∂f

∂Z
= 0 ⇔

∂f

∂Z∗
= 0. (7)

3. The direction of steepest descent of f(·) is given by − ∂f
∂Z∗

and not − ∂f
∂Z .

Coming back to the KLD cost function in (5), its derivative
∂Dpq(W,W∗)

∂W∗
is given by [8]

∂Dpq(W,W∗)

∂W∗
= −W

−H +E
[

ϕ
∗(y,y∗)xH

]

, (8)

where ϕ(y,y∗) = [ϕ1(y1, y
∗
1), · · · , ϕN (yN , y∗N)]T and

ϕi(si, s
∗
i ) = −

∂ log qi(si,s
∗

i )
∂si

. The derivative ∂
∂s is also defined

using the Wirtinger calculus.
A necessary condition for minimizingDpq(W,W∗) atW =

WICA is

∂Dpq(W,W∗)

∂W∗

∣

∣

∣

∣

W=WICA

!
= 0 or

E(ϕ∗(yICA,y
∗
ICA)y

H
ICA) = E(ϕ(yICA,y

∗
ICA)y

T
ICA)

∗ !
= I (9)

with yICA = WICAx = WICAAs +WICAv = ŷ +WICAv.
The properties of the ICA solution are:

• WICA = A−1 if σ2 = 0 (no noise) and q(s) = q0(s).
• To compute WICA, we do not need to know A or s, but the

pdf q(s) =
∏N

i=1 qi(si) is required. All qi(si) must either
be non-Gaussian or Gaussian with distinct noncircularity in-
dices.

• No permutation ambiguity if qi(si) 6= qj(sj) ∀i 6= j.

• There is no scaling ambiguity if qi(si) = q0i (si) is known
∀i. Only a phase ambiguity remains if qi(si) is circular.

As shown in the appendix, the ICA solution for the general
noncircular complex case can be derived approximately using a
two-step perturbation analysis for low noise and is given by

WICA = (I+ σ2
C)A−1 +O(σ4). (10)

The elements of C can be obtained from Eq. (33) and (35). If
q(s) is symmetric in the real or imaginary part of s, they are
given by Eq. (34) and (36).

For comparison, we consider the linear MMSE estimator

WMMSE = A
H

(

AA
H + σ2

Rv

)−1
(11)

=
[

I− σ2
R−1

]

A
−1 +O(σ4). (12)

where the last line is a first-order Taylor series expansion in σ2

and R−1 = A−1RvA
−H . Comparing (12) with (10) we see

that WICA and WMMSE are similar if C ≈ −R−1.

3.2. Circular complex case

A complex random vector s is circular if s and sejθ have the
same pdf for any θ [13]. We assume now that the source signals
s and the noise v are circular. Hence, both the noncircularity

index of the sources γ and the pseudo-covariance matrix R̄v

are zero. As a consequence, (34) and (36) simplify to

Cii = −
κi + λi

1 + ρi + δi
[R−1]ii ∈ R,

Cij = −
κj(κi − 1)

κiκj − 1
[R−1]ij ∈ C (i 6= j). (13)

3.3. Real case
For real signals and noise, we have

γi = 1, Rv = R̄v. (14)

In the derivation of WICA we have considered Taylor series ex-
pansions of ϕ(y) using Wirtinger derivatives. The Wirtinger
derivatives ∂/∂s and ∂/∂s∗ of ϕ(s) ∈ R are now identical (see
(6)) and hence

ξi = κi, ρi = δi, λi = ωi = τi. (15)

Furthermore, the Wirtinger derivatives of ϕ(s) ∈ R are iden-

tical to the real derivatives except for a factor of 1
2 (see (6)).

Hence it holds

κi =
κ̃i
2
, ρi =

ρ̃i
2
, λi =

λ̃i
4
, (16)
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where κ̃i, ρ̃i and λ̃i are defined using real derivatives of ϕ(s).
Using (14)-(16), we get from (34) and (36)

Cii = −
κ̃i +

1
2 λ̃i

1 + ρ̃i
[R−1]ii ,

Cij = −
κ̃j(κ̃i − 1)

κ̃iκ̃j − 1
[R−1]ij (i 6= j). (17)

which corresponds to the results in [10].

4. RESULTS FOR COMPLEX GGD

Since the real case has already been studied in [10], we focus on
the complex case here. Due to space limitations, we study KLD-
ICA only forN = 3 sources with spatially white Gaussian noise

withE[vvH ] = σ2I and the square mixing matrixA = [amn],
where amn = e−jπm sin θn and θn = −60◦, 0◦, 60◦. As in
[5], we use the signal-to-interference-plus-noise ratio (SINR)
to evaluate separation performance. For spatially uncorrelated
noise, SINR for a given demixing matrixW is calculated as

SINR =
1

N

N
∑

i=1

|[WA]ii|
2

∑

j 6=i |[WA]ij |2 + σ2
∑

j |Wij |2
. (18)

The term |[WA]ii|
2 reflects the power of the desired source i

in the demixed signal yi.
∑

j 6=i |[WA]ij |
2 corresponds to the

power of the interfering signals j 6= i in the demixed signal
yi. σ

2
∑

j |Wij |
2 is the noise power in the demixed signal yi.

The signal-to-noise ratio is defined as 1/σ2, i.e. it denotes the
SNR before mixing. It is known that among all linear demixing
matrices W, WMMSE from (11) is the one which maximizes
the SINR. We compare the SINR of the theoretical ICA solu-

tionWICA from (10), the average SINR of ŴICA obtained from
100 runs of KLD-based ICA using L samples and the SINR
of WMMSE from (11). The ICA algorithm is initialized with
W = I and performs gradient descent using the relative gradi-
ent [1], i.e. postmultiplies the gradient of KLD (8) by WHW.
We normalize each row of the relative gradient, resulting in an
adaptive step size for each source. In the derivation of the the-
oretical solution WICA, we evaluated all expectations exactly.
Hence WICA only accounts for the bias from A−1 but not for

estimation variance whereas ŴICA contains both factors.
In the following, all sources are GGD with the same shape

parameter ci = c. The pdf of a noncircular complex GGD with

zero mean and E[|s|2] = 1 can be written as [14] q(s, s∗) =
cα

πΓ(1/c)(1−γ2)1/2
exp

(
−
[

α/2
γ2−1

(
γs2 + γs∗2 − 2ss∗

)]c)
,

where the scale parameter α = Γ(2/c)/Γ(1/c) and Γ(·) is
the Gamma function. γ ∈ [0, 1] controls the noncircularity,
i.e. imbalance between the power of real and imaginary part.
A change of the shape parameter c > 0 varies the form of the
pdf from super-Gaussian (c < 1) to sub-Gaussian (c > 1). For
c = 1, the pdf is Gaussian. By integration in polar coordinates,
it can be shown that

κ = E[θ(s)] =

∫

∂ϕ

∂s∗
q0(s)ds =

c2Γ(2/c)

(1− γ2)Γ2(1/c)
, (19)

δ = E[θ(s)s∗s] =

∫

∂ϕ

∂s∗
ss∗q0(s) =

2c+ (1− c)γ2

2(1− γ2)
, (20)

ρ =E[η(s)s2]=

∫

∂ϕ

∂s
s2q0(s)ds=−

2c−2+(1−3c)γ2

2(1−γ2)
, (21)

ξ = E[η(s)] =

∫

∂ϕ

∂s
q0(s)ds = −γκ, (22)

λ = E[ǫ(s)s] =

∫

∂2ϕ

∂s∂s∗
sq0(s)ds = (c− 1)κ, (23)

ω = E[ν(s)s] =

∫

∂2ϕ

(∂s)2
sq0(s)ds = −

3

2
(c− 1)γκ, (24)

τ = E[ζ(s)s] =

∫

∂2ϕ

(∂s∗)2
sq0(s)ds = −

1

2
(c− 1)γκ. (25)

4.1. Circular complex case

For a circular complex GGD, γ = 0 and hence we get κ =
c2Γ(2/c)
Γ2(1/c) , δ = c, ρ = c− 1, λ = (c− 1)κ and ξ = ω = τ = 0.

Fig. 1 shows that for a wide range of the shape parameter c,

both the theoretical ICA solution WICA and its estimate ŴICA

obtained by running KLD-ICA using L = 104 samples achieve
an SINR close to that of the MMSE solution WMMSE. Note that
for c close to 1, the SINR of the theoretical solution WICA is not
achievable in practice, since all sources become Gaussian and
the Cramér-Rao bound approaches infinity [12]. Hence estima-
tion of W becomes impossible. This is reflected in Fig. 1: The

SINR for ŴICA estimated by KLD-ICA decreases for c → 1.
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WMMSE (11)

WICA (10)

ŴICA (simulation)

Fig. 1: SINR for circular complex GGD signal and circular

complex noise, SNR = 10 dB, ŴICA uses L = 104 samples.

4.2. Noncircular complex case

First, we study the performance with circular noise, i.e. Rv = I
and R̄v = 0, and SNR of 10 dB. The SINR of the MMSE so-
lution WMMSE is 12.4 dB. Fig. 2 shows that for a wide range of
the shape parameter c and the noncircularity index γ, the theo-
retical ICA solution WICA achieves an SINR close to that of
MMSE. Comparing Fig. 2 (a) and (b), we note that the con-
tour plot for the simulation using L = 103 samples differs from
the contour plot for the theoretical ICA solution. One reason is
that for noncircular sources with the same noncircularity index
γi = γ, the estimation variance increases for c → 1. Hence, in
the simulation the SINR decreases in the vicinity of c = 1. Fur-
thermore, the smaller sample size of L = 103 leads to a larger

variance of ŴICA which is not reflected in the theoretical ICA
solution WICA. However, Fig. 2 (b) shows that even with a lim-

ited sample size ŴICA estimated by KLD-ICA can still achieve
an SINR quite close to that of MMSE except for c ≈ 1.

Now, we consider the case where sources are noncircular
complex with γ1 = 0.5, γ2,3 = 0.5 ± ∆γ and the noise v

is noncircular with Rv = I and R̄v = 0.5 · I, i.e. γnoise = 0.5.
Fig. 3 shows decreasing SINR values for c → 1 and ∆γ → 0
since in that region |ℜCij | in (36) becomes large if sources
or noise are noncircular. However, except for this region, the
SINR of the theoretical ICA solution (Fig. 3 (a)) is still close
to that of MMSE. The form of the contour plot for the sim-
ulation (Fig. 3 (b)) is similar to that of the theoretical solu-
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3)

Fig. 2: SINR [dB] of ICA solution for noncircular complex
GGD signals with γi = γ, circular complex noise and SNR =
10 dB

tion but shows slightly lower SINR performance especially for
c ≈ 1 and small ∆γ. This is again due to increasing esti-
mation variance for c → 1 and small ∆γ. Nevertheless, the
performance obtainable in simulations can still be considered
good as long as c is not close to 1 or ∆γ is sufficiently large.
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Fig. 3: SINR [dB] of ICA solution for noncircular complex
GGD signals with γ1 = 0.5, γ2,3 = γ1 ± ∆γ, noncircular
complex noise and SNR = 10 dB

In summary, the results in Sect. 4.1 and 4.2 have shown that

• in many cases the theoretical solution WICA of KLD-ICA
can achieve an SINR close to the optimum attainable by any
linear demixing matrixWwhich is given by W = WMMSE

• for sources following a GGD, ŴICA obtained by running
KLD-ICA with a finite amount of samples L can achieve
an SINR quite close to that of WMMSE except for (nearly)
Gaussian sources with similar noncircularity indices.

Although we assumed that we perfectly know the distributions
of the sources, other approaches such as ICA-EBM [15] exist
which do not require such knowledge. Simulation results using
ICA-EBM show similar SINR performance as KLD-ICA.

5. CONCLUSION AND FUTURE WORK

We have derived an analytic expression for the demixing ma-
trix of KLD-based ICA for the low noise regime by a perturba-
tion analysis taking into account all terms of order σ2. In this
paper, we have considered the general noncircular complex de-
termined case. The solution for the circular complex and real
case can be derived as special cases. Although the KLD and
MMSE solutions differ, linear demixing based on these two cri-
teria yields demixed signals with similar SINR in many cases.
In practice, however, not only the bias studied in this paper but
also the variance of the estimate are important for SINR. Our
derivation for the low noise regime could be extended for large
noise by including higher-order terms in the Taylor series.

APPENDIX A. DERIVATION OF (10)

Here we derive an analytic expression for WICA in the pres-
ence of noise by using a perturbation analysis. Motivated by

WICA
σ2=0
= A−1, we assume that WICA can be written as

WICA = A−1 + σ2B + O(σ4) and derive B by a two-step
perturbation analysis:

1. Taylor series approximation of E(ϕ(y)yT ) in (9) at y =
ŷ = WICAAs taking into account all terms of order σ2.

2. Taylor series approximation of the result of the above step
by exploiting WICA = A−1 +σ2B+O(σ4) and ŷ = s+
σ2BAs+O(σ4) = s+σ2Cs+O(σ4) = s+σ2b+O(σ4)
with C = BA and b = Cs = [b1, · · · , bN ]T .

In this way, we determine explicitely the deviation σ2B of
WICA from the inverse solution A−1.

The general Taylor series expansion of ϕ(y) =̂ϕ(y, y∗) is

given in (26) on the next page with η(y, y∗) = ∂ϕ
∂y , θ(y, y∗) =

∂ϕ
∂y∗

, ν(y, y∗) = ∂2ϕ
(∂y)2 , ζ(y, y∗) = ∂2ϕ

(∂y∗)2 and ǫ(y, y∗) =

∂2ϕ
∂y∂y∗

. To simplify notation, we will drop the dependence of

ϕ(·), η(·), θ(·), ν(·), ζ(·), ǫ(·) on y∗ and keep only the depen-
dence on y in the following. Furthermore, boldface vectors z
denote the corresponding scalar values zi, 1 ≤ i ≤ N stacked
into an N -dimensional column vector.

For the first Taylor series, we expand ϕ(y) at y = ŷ =
WAs. By using a vectorized form of (26) with ∆y = Wv we
get (27) on the next page. diag(z) is a diagonal matrix whose
diagonal elements are those of the vector z. Diag(Z) sets all
off-diagonal elements of the matrix Z to zero. Multiplying (27)
by yT and taking the expectation, we get (28) from (9).

The (i, j)-th element of the matrix E
[
ϕ(ŷ)ŷT

]
in (28) can

be written as a second Taylor series developed at ŷ = s:

E
[

ϕ(ŷ)ŷT
]

ij

= E
[

(ϕi(si) + ηi(si)σ
2bi + θi(si)σ

2b∗i )(sj + σ2bj)
]

+O(σ4)

= E
[

ϕi(si)sj
]

+ E
[

ηi(si)σ
2bisj

]

+ E
[

θi(si)σ
2b∗i sj

]

+E
[

ϕi(si)σ
2bj

]

+O(σ4) (30)

with bj =
∑N

l=1 Cjlsl. We calculate the individual terms as

E
[

ϕi(si)sj
]

=

{

1 i = j

0 i 6= j

E
[

ηi(si)bisj
]

=
∑

l

CilE
[

ηi(si)slsj
]

=

{

ρiCii i = j

γjξiCij i 6= j

E
[

θi(si)b
∗
i sj

]

=
∑

l

C∗
ilE

[

θi(si)s
∗
l sj

]

=

{

δiC
∗
ii i = j

κiC
∗
ij i 6= j

E
[

ϕi(si)bj
]

= Cji (31)

with ρi = E
[
ηi(si)s

2
i

]
, δi = E [θi(si)s

∗
i si], κi = E [θi(si)],

ξi = E [ηi(si)] and γi = E[s2i ]. γi is the noncircularity index
for source i. From (30), we get

E
[

ϕ(ŷ)ŷT
]

= I+ σ2(diag(ρ)− Diag(ξγT ))Diag(C)

+ σ2
diag(ξ)Cdiag(γ) + σ2

diag(κ)C∗

+ σ2
diag(δ − κ)Diag(C∗) + σ2

C
T . (32)
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ϕ(y, y∗) = ϕ(ŷ, ŷ∗) +
∂ϕ

∂y
∆y +

∂ϕ

∂y∗
∆y∗ +

1

2

(

∂2ϕ

(∂y)2
(∆y)2 +

∂2ϕ

(∂y∗)2
(∆y∗)2

)

+
∂2ϕ

∂y∂y∗
∆y∆y∗ + . . .

= ϕ(ŷ, ŷ∗) + η(y, y∗)∆y+θ(y, y∗)∆y∗ +
1

2

(

ν(y, y∗)(∆y)2 + ζ(y, y∗)(∆y∗)2
)

+ ǫ(y, y∗)∆y∆y∗ + . . . (26)

ϕ(y) = ϕ(ŷ) + diag(η(ŷ))Wv+diag(θ(ŷ))W∗
v
∗ +

1

2
diag(ν(ŷ))(Wv ⊙Wv)

+
1

2
diag(ζ(ŷ))(W∗

v
∗ ⊙W

∗
v
∗) + diag(ǫ(ŷ))Wv ⊙W

∗
v
∗ + . . . (27)

I = E
[

ϕ(ŷ)ŷT
]

+E [diag(η(ŷ))]E
[

Wvv
T
W

T
]

+E [diag(θ(ŷ))]E
[

W
∗
v
∗
v
T
W

T
]

+
1

2
E
[

ν(ŷ)ŷT
]

E
[

Diag(Wvv
T
W

T )
]

+
1

2
E
[

ζ(ŷ)ŷT
]

E
[

Diag(W∗
v
∗(v∗)T (W∗)T )

]

+ E
[

ǫ(ŷ)ŷT
]

E
[

Diag(Wvv
H
W

H )
]

+O(σ4) (28)

0 = (diag(ρ)− Diag(ξγT ))Diag(C)+diag(ξ)Cdiag(γ)+diag(κ)C∗+diag(δ−κ)Diag(C∗)+C
T +diag(κ)(WRvW

H)∗

+diag(λ)Diag(WRvW
H)+diag(ξ)(WR̄vW

T)+
1

2
diag(ω)Diag(WR̄vW

T)+
1

2
diag(τ )Diag(WR̄vW

T)∗+O(σ4) (29)

Let ωi = E [νi(si)si], τi = E [ζi(si)si] and λi =
E [ǫi(si)si]. For the remaining terms in (28), we use the fol-
lowing properties:

• For i 6= j, E [νi(ŷi)ŷj ], E [ζi(ŷi)ŷj ] and E [ǫi(ŷi)ŷj ] are

all O(σ2) since ŷi = si +O(σ2), ŷj = sj +O(σ2) and si
and sj are independent.

• With the same reasoning, we get E [ηi(ŷi)] = ξi +O(σ2),
E [θi(ŷi)] = κi + O(σ2), E [νi(ŷi)ŷi] = ωi + O(σ2),
E [ζi(ŷi)ŷi] = τi+O(σ2) and E [ǫi(ŷi)ŷi] = λi+O(σ2).

As defined in Sec. 2, E[vvH ] = σ2Rv and E[vvT ] = σ2R̄v.
Using these properties and (32), we get (29) from (28).

Since W = A−1+O(σ2), we define the transformed noise

covariance matrix R−1 = WRvW
H = A−1RvA

−H +
O(σ2) and the transformed noise pseudo-covariance matrix

R̄−1 = WR̄vW
T = A−1R̄vA

−T + O(σ2). Note that

RH
−1 =R−1 and R̄T

−1 = R̄−1. For the diagonal elements Cii

we get from (29)

ρiCii+δiC
∗
ii+Cii=−(κi+λi) [R−1]ii

−(ξi+
1

2
ωi)

[

R̄−1
]

ii
−
1

2
τi
[

R̄−1
]∗

ii
. (33)

If q(s, s∗) is symmetric in the real part ℜs or imaginary part

ℑs of s, i.e. q(−ℜs,ℑs) = q(ℜs,ℑs) or q(ℜs,−ℑs) =
q(ℜs,ℑs), the parameters κi, ρi, δi, λi, ξi, ωi, τi are real. For
ρi + 1± δi 6= 0, we then get

ℜCii = −
(κi + λi) [R−1]ii + (ξi +

1
2 (ωi + τi))

[

ℜR̄−1
]

ii

ρi + 1 + δi
,

ℑCii = −
(ξi +

1
2 (ωi − τi))

[

ℑR̄−1

]

ii

ρi + 1− δi
. (34)

For the off-diagonal elements Cij we get from (29)

γjξiCij + κiC
∗
ij + Cji = −κi [R−1]

∗
ij − ξi

[

R̄−1
]

ij
,

γiξjCji + κjC
∗
ji + Cij = −κj [R−1]

∗
ji − ξj

[

R̄−1

]

ji
. (35)

If q(s, s∗) is symmetric in the real or imaginary part of s, and if
(γjξi+κi)(γiξj+κj) 6= 1 and (γjξi−κi)(γiξj−κj) 6= 1, we
obtain the real and imaginary part of Cij from (35) as

ℜCij=
(κj−κi(γiξj+κj))[ℜR−1]ij+(ξj−ξi(γiξj+κj))

[

ℜR̄−1

]

ij

(γjξi+κi)(γiξj+κj)−1
,

ℑCij=
(κj+κi(γiξj−κj))[ℑR−1]ij+(ξj−ξi(γiξj−κj))

[

ℑR̄−1
]

ij

(γjξi−κi)(γiξj−κj)−1
.

(36)
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