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ABSTRACT

The authors proposed a method of estimating the source loca-
tions in colored noise using a hierarchical model in Bayesian
estimation framework. In this paper, the reversible jump
MCMC method is introduced into this method to jointly es-
timate the number of sources. By introducing this, the cases
in which the number of sources is unknown or dynamically
changes can be handled. The results of the experiments show
an improvement over the conventional methods in terms of
the source localization performance in a room reverberation.

Index Terms— source localization, Bayesian estimation,
hierarchical model, reversible jump MCMC

1. INTRODUCTION

For source localization in spatially colored noise such as re-
verberation of rooms, the performance of the conventional es-
timators such as the maximum likelihood (ML) method or the
MUSIC method is often reduced [1]. The authors proposed
a method of joint estimation of the noise covariance and the
source location using a hierarchical model in a Bayesian es-
timation framework [2]. By using the hierarchical model, the
common structure of the covariance can be extracted, and
therefore, the stable estimate of the covariance can be ob-
tained from a smaller amount of data. A problem in this
method is that the order of the model, i.e., the number of
sources, must be known in advance. In real applications, the
number of sources is often unknown. Moreover, even if the
number of physical sources is known, the number of active
sources may dynamically change for a source signal such as
speech due to its sparseness in the frequency domain. There-
fore, the number of sources must be jointly estimated.

In the Bayesian framework, a method for jointly estimat-
ing the model order, the reversible jump MCMC (Markov
chain Monte Carlo) method, was proposed by Green [3] and
was applied to the estimation of the frequency of sinusoids by
Andrieu et al. [4]; this is essentially the same as the source
localization problem. In this paper, the authors introduce this
method into their hierarchical model and examine its perfor-
mance using the simulated and actually recorded data.

2. JOINT ESTIMATION USING HIERARCHICAL
MODEL

In this section, the joint estimation framework proposed by
the authors [2] is briefly reviewed to facilitate an understand-
ing of the following sections.

2.1. Model of signal/noise

The observation vector is assumed to be modeled as

zj,k = Aj(θj)sj,k + vj,k (1)

where the mth element of zj,k denotes the short-time Fourier
transform (STFT) of the mth sensor input at the time frame
index k. The symbol j denotes the index for the time block
that consists of K observations as Zj = [zj,1, · · · , zj,K ].
The symbol Aj(θj) denotes the array manifold matrix. The
source direction θj = [θj,1, · · · , θj,Nj ]

T within the block is
assumed to be invariant. The symbols sj,k and vj,k are the
source vector and noise vector, respectively. The covariance
matrix is assumed to be modeled as

Rj = E[zj,kz
H
j,k] = AjΓjA

H
j +Kj (2)

where Γj = E[sj,ksHj,k] and Kj = E[vj,kvH
j,k]. The sym-

bols M and Nj denote the number of sensors and sources,
respectively.

2.2. Joint estimation framework

The parameters to be estimated are Θj = {θj ,Kj ,Sj , Nj},
for j = 1, · · · , J where Sj = [sj,1, · · · , sj,K ]. The esti-
mation of Nj is introduced in Section 3, and thus is omitted
in this section. The parameters {θj ,Kj ,Sj} are estimated
using the combination of Gibbs sampling and the Metropolis
algorithm [5] in each time block. Then, the prior of {Kj ; j =
1, · · · , J} is estimated using the hierarchical model. The as-
sumed sampling model is:

K1, · · · ,KJ ∼ i.i.d. inverse-Wishart(ν0, (ν0K0)
−1) (3)

where ν0 and K0 are the parameters of the inverse-Wishart
distribution to be estimated. The procedure for the joint esti-
mation is summarized as follows:
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1. Set {K(1)
j }, {θ(1)

j }, K(1)
0 , ν(1)0 and p = 1.

2. Sample s(p+1)
j,k ∼ p(sj,k|Zj ,θ

(p)
j ,K(p)

j ) ∀j, k

3. Sample K(p+1)
j ∼ p(Kj |Zj ,S

(p+1)
j ,θ(p)

j ) ∀j

4. Sample θ(p+1)
j as: θ∗

j ∼ J(θ∗
j |θ

(p)
j ) ∀j

θ(p+1)
j =

{
θ∗
j r > rthr

θ(p) otherwise

5. Sample K0 as:

K(p+1)
0 ∼ p(K0|K(p+1)

1 , · · · ,K(p+1)
J , ν(p)0 )

6. Sample ν0 as:

ν(p+1)
0 ∼ p(ν0|K(p+1)

0 ,K(p+1)
1 , · · · ,K(p+1)

J )

7. Go back to Step 2 with p← p+ 1.

Here, ·(p) denotes the index for the iteration. The symbol
J(θ∗

j |θ
(p)
j ) denotes the proposal distribution of θj given θ(p)

j .
The symbol r is the acceptance ratio defined as:

r :=
p(θ∗

j |Zj ,S
(p+1)
j ,K(p+1)

j )

p(θ(p)
j |Zj ,S

(p+1)
j ,K(p+1)

j )
(4)

The symbol rthr is an appropriate threshold. For the concrete
distribution for the sampling and other details, see [2].

3. ESTIMATION OF NUMBER OF SOURCES USING
REVERSIBLE JUMP MCMC

3.1. Reversible jump MCMC

In this section, the reversible jump MCMC method[3] is in-
troduced in the joint estimation frame work described in the
previous sections. In this paper, the following three moves
[4] were employed in Step 4 of the joint estimation procedure
described in Section 2.2:

• Birth:

1. Increase the number of sources: N∗
j = N (p)

j + 1

2. Propose a new source with the location θj,N∗
j

ran-
domly selected from the possible locations.

3. Evaluate the acceptance ratio r described in Sec-
tion 3.2

4. If r > rthr, N (p+1)
j = N∗

j and θ(p)
j = θ∗

j (=

[θ(p)
j , θj,N∗ ]).

• Death:

1. Decrease the number of sources: N∗
j = N (p)

j −1.

2. Eliminate one of the sources randomly from θ(p)
j

to yield θ∗
j .

3. Evaluate the acceptance ratio r.

4. If r > rthr, N (p+1)
j = N∗

j and θ(p+1)
j = θ∗

j .

• Update:

1. Conduct Step 4 in Section 2.2

One of these three moves is selected randomly during
the iteration. The threshold rthr can be obtained as rthr ∼
U(0, 1), where U() denotes the uniform distribution.

3.2. Acceptance ratio

The acceptance ratio in reversible jump MCMC is defined as
[3, 4]

r = posterior ratio× proposal ratio (5)

In this paper, the proposal ratio is assumed to be unity for
the sake of simplicity. Thus, the acceptance ratio is given
by the same expression as (4). However, S(p+1)

j cannot be
used in (4) since the dimension of S(p+1)

j is changed by the
move. Therefore, S(p+1)

j must be eliminated from (4) using
integration.

Assuming that θj has uniform prior distribution and is
independent of Sj and Kj , the full conditional distribution
of θj is given by

p(θj |Zj ,Sj ,Kj) ∝ p(Zj |θj ,Sj ,Kj)p(θj |Sj ,Kj)

∝ p(Zj |θj ,Sj ,Kj) (6)

Assuming that the noise vj,k has a complex Gaussian distri-
bution, the likelihood p(Zj |θj ,Sj ,Kj) is given by

p(Zj |θj ,Sj ,Kj) = π−MK |Kj |−K× (7)

exp

{
−

K∑

k=1

(zj,k −Ajsj,k)
H K−1

j (zj,k −Ajsj,k)

}

From the integration of Sj and omitting the unnecessary
terms, (7) becomes

p(Zj |θj ,Kj) =

∫
p(Zj |θj ,Sj ,Kj)dSj

∝ |Kj |−K |Σj |K exp{−tr [CjP j ]}(8)

where

Cj :=
K∑

k=1

zj,kz
H
j,k (9)

Σj :=
(
AH

j K−1
j Aj

)−1
(10)

P j := K−1
j −K−1

j AjΣjA
H
j K−1

j (11)
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Table 1. Parameters for analysis.
Parameter Value
Sampling frequency 16 kHz
Frame length (STFT lengthj 512 points@
Frame shift 128 points
Block length 2.0 s (Exp. I) /

0.2 s (Exp. II and III)
Number of iterations 1000
Frequency 1500 Hz (Exps. I and II) /

1400-2100Hz (Exp. III)

From these, the logarithm of the acceptance ratio becomes

log r = log p(θ∗
j |Zj ,Kj)− log p(θ(p)

j |Zj ,Kj)

∝ K
(
log |Σ∗

j |− log |Σ(p)
j |

)

−
(
tr
[
CjP

∗
j

]
− tr

[
CjP

(p)
j

])
(12)

As shown in Section 4, the dependency of |Σ∗
j | on θ∗

j is
low compared to that of tr

[
CjP

∗
j

]
1. Thus, when the number

of sources is unchanged by the move, log |Σ∗
j | ' log |Σ(p)

j |.
In this case, the acceptance ratio log r is mainly determined
by the second term, −

(
tr
[
CjP

∗
j

]
− tr

[
CjP

(p)
j

])
.

When N∗
j > N (p)

j (birth move), this second term tends
to increase. This can be understood by the fact that the
likelihood, in general, increases as the degree of freedom
in the model increases. Therefore, when the model order
is determined based on the likelihood, a “penalty” term is
usually introduced as in AIC/MDL. In (12), the first term,
K

(
log |Σ∗

j |− log |Σ(p)
j |

)
functions as a penalty. The de-

terminant of Σ∗
j can be decomposed using its eigenvalues

as:

log |Σ∗
j | =

N∗
j∑

i=1

log λi (13)

where {λi} denotes the eigenvalues. By appropriate scaling
of data Zj , the eigenvalues can also be scaled as λi < 1, ∀i.
Thus, when N∗

j > N (p)
j , the first term in (12) decreases. Sim-

ilarly, in the case of the death move, the first term increases.
In the first term of (12), K can be viewed as the factor

that controls the magnitude of the penalty, and an appropri-
ate value should be selected. However, K is the number of
frames in a block and is usually determined by the applica-
tion. Therefore, in the proposed method, instead of using the
actual K, it is replaced by the arbitral constant κ in (12). The
value of κ is optimized experimentally in Section 4.

1The exception is the case where two or more of the sources are identical
and the column of Σ∗

j is linearly dependent. This case is eliminated in the
iteration.
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Fig. 1. Variation of θ(p)
j and N̂j . The dotted line in (a) shows

the true θj .

4. EXPERIMENT

4.1. Exp. I - base line

The introduction of the reversible jump MCMC method into
the joint estimation framework is examined first in an ideal
condition with the simulated data. A microphone-array input
is generated by convolving the room impulse responses mea-
sured in a meeting room (room size:8 m × 9 m × 3 m, rever-
beration time' 0.5 s) with the source signal (Gaussian noise).
The true number of sources Nj is selected from {1, 2, 3}. The
angular distance between the sources is 20◦ and the distance
between the sources and the microphone array is 1.5 m. An
8-element microphone array mounted on the head of a robot
is used. To focus on the performance of the joint estimation
of Θj including Nj , a longer block length, 2.0 s, is chosen.
In this case, the hierarchical modeling of Kj is not necessary
and is not employed in Exp. I since sufficient amount of data
is available. Thus the number of blocks is set as J = 1. The
parameters for signal analysis are summarized in Table 1. The
estimate N (p)

j is also selected from {1, 2, 3}.

Fig. 1 shows an example of the variations in θ(p)
j and N (p)

j

during the iterations. As the final estimate N̂j , N (p)
j with the

highest frequency is employed. Then, {θ(p)
j } with N (p)

j =

N̂j is averaged.
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(a) Nj = 1 (b) Nj = 2 (c) Nj = 3
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Fig. 2. Histogram of N̂j for different true Nj in Exp. I.
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Fig. 3. Value of log |Σj | for different N̂j .

Fig. 2 shows the histogram of N̂j for 600 trials. From
this, it can be seen that the correct N̂j is estimated with high
probability.

Table 2 shows the MAE for different true Nj . MAE is de-
fined as (1/Ntrial)

∑
t |θ̂j − θj |, where t and Ntrial indicate

the index and the total number of trials, respectively. The val-
ues of C4 and C8 indicate the probabilities of MAE ≤ 4◦ and
MAE ≤ 8◦, respectively. In this table, the error for Nj = 1
is relatively high. By increasing κ, the error for Nj = 1 can
be reduced, resulting in an increase in the MAE for Nj = 3
instead.

Fig. 3 shows the value of log |Σj | for different N̂j . From
this, it can be seen that the value decreases as N̂j increases
while the variation in the same N̂j is relatively small. The
optimum value of κ is determined so that the sum of mean ab-
solute error (MAE) for all true Nj = {1, 2, 3} is minimized.

4.2. Exp. II - hierarchical model

In this subsection, the performance when including the hier-
archical model of Kj is evaluated using the simulated data.
The block length is reduced to 0.2 s. The number of blocks is
J = 20. In a single trial (20 blocks), true Nj is invariant while

Table 2. MAE for Exp. I.

Nj = 1 Nj = 2 Nj = 3
MAE 13.01 2.89 7.54
C4 0.76 0.80 0.39
C8 0.77 0.95 0.70

the location of sources is randomly selected (angular distance
between the sources is 20◦). 30 trails were conducted so that
the number of final estimates is the same as that in Exp. I.

Fig. 4 shows the histogram of N̂j . As compared to Fig. 2,
the error for Nj = 3 has increased. Table 3 shows the MAE
defined as (1/(Ntrial× J))

∑
t

∑
j |θ̂j − θj |. With regard to

the estimation of θj , the error is comparable to that of Exp. I.
Since the amount of data in a single block is reduced to 1/10th
of that in Exp. I, the effect of the hierarchical model is con-
firmed.

Table 3. MAE for Exp. II.

Nj = 1 Nj = 2 Nj = 3
MAE 1.29 4.44 9.69
C4 0.99 0.62 0.42
C8 0.99 0.92 0.80

4.3. Exp. III - real data

In this experiment, the proposed method is applied to a more
realistic dynamic environment. Two human speakers are
walking around the robot (HRI-JP, Hearbo) at a distance of
1.5 m. Speech signals from the human speakers are recorded
using an 8-element microphone array (approximately circular
configuration) mounted on the head of the robot. The rever-
beration time is approximately 0.3 s. The interval between
the human speakers is approximately 30◦. The data in the 20
consecutive time blocks in the middle frequency range (1400-
2100 Hz, 22 bins) are analyzed. The locations of humans are
obtained using ultrasonic transmitters and are used as true θj .
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(a) Nj = 1 (b) Nj = 2 (c) Nj = 3
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Fig. 4. Histogram of N̂j for different true Nj in Exp. II.

While the number of physical sources is two, the number of
active sources in each combination of the time block and the
frequency bin is unknown and time-varying among {0, 1, 2}
due to the sparseness of the speech source signal. Thus, the
block-frequency combination with low power is first elimi-
nated from the estimation and N̂j is selected from {1, 2} for
the rest of the block-frequency combinations. With regard to
the evaluation of {θ̂j}, the estimates are classified according
to N̂j and the values of MAE, C4 and C8 were calculated for
each case. For the sake of comparison, the MUSIC and ML
estimator with the assumption of N̂j = 2 are also evaluated.

Fig. 5 shows the histogram of N̂j . Table 4 summarizes
the MAE, C4 and C8 values. From these, it can be seen that
the results of the proposed method for N̂j = 2 are similar to
those of MUSIC and ML. On the other hand, the results for
the proposed method for N̂j = 1 are improved.

Table 4. MAE for Exp. III.

Proposed
N̂j = 1 N̂j = 2 ML MUSIC

MAE 19.36 47.14 47.50 48.90
C4 0.35 0.20 0.24 0.23
C8 0.52 0.36 0.37 0.33

4.4. Conclusion

In this paper, a method of joint estimation for the number of
sources and their locations was proposed and was examined.
From the results of the simulation (Exps. I and II), the poten-
tial of the joint estimation was shown. For the real recorded
data (Exp. III), the effect of the proposed method was rec-
ognized but was limited to the case of N̂j = 1. Since the
reverberation was generated by the actual room impulse re-
sponses in both the simulated and recorded data, the major
difference between them is considered to be the source sig-
nal. A speech signal is sparse in the frequency domain and the
power balance of the sources changes dynamically even when
both sound sources are active. This sometimes results in the

signal-to-noise ratio being very low and makes the detection
of sources difficult. For the future, an additional framework
such as sequential Monte Carlo (SMC) in the time domain
and the averaging in the frequency domain can be introduced
to obtain the final stable trajectory of sources.
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Fig. 5. Histogram of N̂j in Exp. III.
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